IThioye commited on
Commit
cb72b38
1 Parent(s): 0578219

added sam2 model

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. sam2/__init__.py +11 -0
  2. sam2/__pycache__/__init__.cpython-311.pyc +0 -0
  3. sam2/__pycache__/build_sam.cpython-311.pyc +0 -0
  4. sam2/__pycache__/sam2_image_predictor.cpython-311.pyc +0 -0
  5. sam2/automatic_mask_generator.py +454 -0
  6. sam2/build_sam.py +167 -0
  7. sam2/configs/sam2.1/sam2.1_hiera_b+.yaml +116 -0
  8. sam2/configs/sam2.1/sam2.1_hiera_l.yaml +120 -0
  9. sam2/configs/sam2.1/sam2.1_hiera_s.yaml +119 -0
  10. sam2/configs/sam2.1/sam2.1_hiera_t.yaml +121 -0
  11. sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml +339 -0
  12. sam2/configs/sam2/sam2_hiera_b+.yaml +113 -0
  13. sam2/configs/sam2/sam2_hiera_l.yaml +117 -0
  14. sam2/configs/sam2/sam2_hiera_s.yaml +116 -0
  15. sam2/configs/sam2/sam2_hiera_t.yaml +118 -0
  16. sam2/csrc/connected_components.cu +289 -0
  17. sam2/modeling/__init__.py +5 -0
  18. sam2/modeling/__pycache__/__init__.cpython-311.pyc +0 -0
  19. sam2/modeling/__pycache__/memory_attention.cpython-311.pyc +0 -0
  20. sam2/modeling/__pycache__/memory_encoder.cpython-311.pyc +0 -0
  21. sam2/modeling/__pycache__/position_encoding.cpython-311.pyc +0 -0
  22. sam2/modeling/__pycache__/sam2_base.cpython-311.pyc +0 -0
  23. sam2/modeling/__pycache__/sam2_utils.cpython-311.pyc +0 -0
  24. sam2/modeling/backbones/__init__.py +5 -0
  25. sam2/modeling/backbones/__pycache__/__init__.cpython-311.pyc +0 -0
  26. sam2/modeling/backbones/__pycache__/hieradet.cpython-311.pyc +0 -0
  27. sam2/modeling/backbones/__pycache__/image_encoder.cpython-311.pyc +0 -0
  28. sam2/modeling/backbones/__pycache__/utils.cpython-311.pyc +0 -0
  29. sam2/modeling/backbones/hieradet.py +317 -0
  30. sam2/modeling/backbones/image_encoder.py +134 -0
  31. sam2/modeling/backbones/utils.py +95 -0
  32. sam2/modeling/memory_attention.py +169 -0
  33. sam2/modeling/memory_encoder.py +181 -0
  34. sam2/modeling/position_encoding.py +221 -0
  35. sam2/modeling/sam/__init__.py +5 -0
  36. sam2/modeling/sam/__pycache__/__init__.cpython-311.pyc +0 -0
  37. sam2/modeling/sam/__pycache__/mask_decoder.cpython-311.pyc +0 -0
  38. sam2/modeling/sam/__pycache__/prompt_encoder.cpython-311.pyc +0 -0
  39. sam2/modeling/sam/__pycache__/transformer.cpython-311.pyc +0 -0
  40. sam2/modeling/sam/mask_decoder.py +295 -0
  41. sam2/modeling/sam/prompt_encoder.py +182 -0
  42. sam2/modeling/sam/transformer.py +360 -0
  43. sam2/modeling/sam2_base.py +907 -0
  44. sam2/modeling/sam2_utils.py +323 -0
  45. sam2/sam2_hiera_b+.yaml +1 -0
  46. sam2/sam2_hiera_l.yaml +1 -0
  47. sam2/sam2_hiera_s.yaml +1 -0
  48. sam2/sam2_hiera_t.yaml +1 -0
  49. sam2/sam2_image_predictor.py +466 -0
  50. sam2/sam2_video_predictor.py +1172 -0
sam2/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from hydra import initialize_config_module
8
+ from hydra.core.global_hydra import GlobalHydra
9
+
10
+ if not GlobalHydra.instance().is_initialized():
11
+ initialize_config_module("sam2", version_base="1.2")
sam2/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (575 Bytes). View file
 
sam2/__pycache__/build_sam.cpython-311.pyc ADDED
Binary file (5.8 kB). View file
 
sam2/__pycache__/sam2_image_predictor.cpython-311.pyc ADDED
Binary file (24.1 kB). View file
 
sam2/automatic_mask_generator.py ADDED
@@ -0,0 +1,454 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # Adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py
8
+ from typing import Any, Dict, List, Optional, Tuple
9
+
10
+ import numpy as np
11
+ import torch
12
+ from torchvision.ops.boxes import batched_nms, box_area # type: ignore
13
+
14
+ from sam2.modeling.sam2_base import SAM2Base
15
+ from sam2.sam2_image_predictor import SAM2ImagePredictor
16
+ from sam2.utils.amg import (
17
+ area_from_rle,
18
+ batch_iterator,
19
+ batched_mask_to_box,
20
+ box_xyxy_to_xywh,
21
+ build_all_layer_point_grids,
22
+ calculate_stability_score,
23
+ coco_encode_rle,
24
+ generate_crop_boxes,
25
+ is_box_near_crop_edge,
26
+ mask_to_rle_pytorch,
27
+ MaskData,
28
+ remove_small_regions,
29
+ rle_to_mask,
30
+ uncrop_boxes_xyxy,
31
+ uncrop_masks,
32
+ uncrop_points,
33
+ )
34
+
35
+
36
+ class SAM2AutomaticMaskGenerator:
37
+ def __init__(
38
+ self,
39
+ model: SAM2Base,
40
+ points_per_side: Optional[int] = 32,
41
+ points_per_batch: int = 64,
42
+ pred_iou_thresh: float = 0.8,
43
+ stability_score_thresh: float = 0.95,
44
+ stability_score_offset: float = 1.0,
45
+ mask_threshold: float = 0.0,
46
+ box_nms_thresh: float = 0.7,
47
+ crop_n_layers: int = 0,
48
+ crop_nms_thresh: float = 0.7,
49
+ crop_overlap_ratio: float = 512 / 1500,
50
+ crop_n_points_downscale_factor: int = 1,
51
+ point_grids: Optional[List[np.ndarray]] = None,
52
+ min_mask_region_area: int = 0,
53
+ output_mode: str = "binary_mask",
54
+ use_m2m: bool = False,
55
+ multimask_output: bool = True,
56
+ **kwargs,
57
+ ) -> None:
58
+ """
59
+ Using a SAM 2 model, generates masks for the entire image.
60
+ Generates a grid of point prompts over the image, then filters
61
+ low quality and duplicate masks. The default settings are chosen
62
+ for SAM 2 with a HieraL backbone.
63
+
64
+ Arguments:
65
+ model (Sam): The SAM 2 model to use for mask prediction.
66
+ points_per_side (int or None): The number of points to be sampled
67
+ along one side of the image. The total number of points is
68
+ points_per_side**2. If None, 'point_grids' must provide explicit
69
+ point sampling.
70
+ points_per_batch (int): Sets the number of points run simultaneously
71
+ by the model. Higher numbers may be faster but use more GPU memory.
72
+ pred_iou_thresh (float): A filtering threshold in [0,1], using the
73
+ model's predicted mask quality.
74
+ stability_score_thresh (float): A filtering threshold in [0,1], using
75
+ the stability of the mask under changes to the cutoff used to binarize
76
+ the model's mask predictions.
77
+ stability_score_offset (float): The amount to shift the cutoff when
78
+ calculated the stability score.
79
+ mask_threshold (float): Threshold for binarizing the mask logits
80
+ box_nms_thresh (float): The box IoU cutoff used by non-maximal
81
+ suppression to filter duplicate masks.
82
+ crop_n_layers (int): If >0, mask prediction will be run again on
83
+ crops of the image. Sets the number of layers to run, where each
84
+ layer has 2**i_layer number of image crops.
85
+ crop_nms_thresh (float): The box IoU cutoff used by non-maximal
86
+ suppression to filter duplicate masks between different crops.
87
+ crop_overlap_ratio (float): Sets the degree to which crops overlap.
88
+ In the first crop layer, crops will overlap by this fraction of
89
+ the image length. Later layers with more crops scale down this overlap.
90
+ crop_n_points_downscale_factor (int): The number of points-per-side
91
+ sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
92
+ point_grids (list(np.ndarray) or None): A list over explicit grids
93
+ of points used for sampling, normalized to [0,1]. The nth grid in the
94
+ list is used in the nth crop layer. Exclusive with points_per_side.
95
+ min_mask_region_area (int): If >0, postprocessing will be applied
96
+ to remove disconnected regions and holes in masks with area smaller
97
+ than min_mask_region_area. Requires opencv.
98
+ output_mode (str): The form masks are returned in. Can be 'binary_mask',
99
+ 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
100
+ For large resolutions, 'binary_mask' may consume large amounts of
101
+ memory.
102
+ use_m2m (bool): Whether to add a one step refinement using previous mask predictions.
103
+ multimask_output (bool): Whether to output multimask at each point of the grid.
104
+ """
105
+
106
+ assert (points_per_side is None) != (
107
+ point_grids is None
108
+ ), "Exactly one of points_per_side or point_grid must be provided."
109
+ if points_per_side is not None:
110
+ self.point_grids = build_all_layer_point_grids(
111
+ points_per_side,
112
+ crop_n_layers,
113
+ crop_n_points_downscale_factor,
114
+ )
115
+ elif point_grids is not None:
116
+ self.point_grids = point_grids
117
+ else:
118
+ raise ValueError("Can't have both points_per_side and point_grid be None.")
119
+
120
+ assert output_mode in [
121
+ "binary_mask",
122
+ "uncompressed_rle",
123
+ "coco_rle",
124
+ ], f"Unknown output_mode {output_mode}."
125
+ if output_mode == "coco_rle":
126
+ try:
127
+ from pycocotools import mask as mask_utils # type: ignore # noqa: F401
128
+ except ImportError as e:
129
+ print("Please install pycocotools")
130
+ raise e
131
+
132
+ self.predictor = SAM2ImagePredictor(
133
+ model,
134
+ max_hole_area=min_mask_region_area,
135
+ max_sprinkle_area=min_mask_region_area,
136
+ )
137
+ self.points_per_batch = points_per_batch
138
+ self.pred_iou_thresh = pred_iou_thresh
139
+ self.stability_score_thresh = stability_score_thresh
140
+ self.stability_score_offset = stability_score_offset
141
+ self.mask_threshold = mask_threshold
142
+ self.box_nms_thresh = box_nms_thresh
143
+ self.crop_n_layers = crop_n_layers
144
+ self.crop_nms_thresh = crop_nms_thresh
145
+ self.crop_overlap_ratio = crop_overlap_ratio
146
+ self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
147
+ self.min_mask_region_area = min_mask_region_area
148
+ self.output_mode = output_mode
149
+ self.use_m2m = use_m2m
150
+ self.multimask_output = multimask_output
151
+
152
+ @classmethod
153
+ def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2AutomaticMaskGenerator":
154
+ """
155
+ Load a pretrained model from the Hugging Face hub.
156
+
157
+ Arguments:
158
+ model_id (str): The Hugging Face repository ID.
159
+ **kwargs: Additional arguments to pass to the model constructor.
160
+
161
+ Returns:
162
+ (SAM2AutomaticMaskGenerator): The loaded model.
163
+ """
164
+ from sam2.build_sam import build_sam2_hf
165
+
166
+ sam_model = build_sam2_hf(model_id, **kwargs)
167
+ return cls(sam_model, **kwargs)
168
+
169
+ @torch.no_grad()
170
+ def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
171
+ """
172
+ Generates masks for the given image.
173
+
174
+ Arguments:
175
+ image (np.ndarray): The image to generate masks for, in HWC uint8 format.
176
+
177
+ Returns:
178
+ list(dict(str, any)): A list over records for masks. Each record is
179
+ a dict containing the following keys:
180
+ segmentation (dict(str, any) or np.ndarray): The mask. If
181
+ output_mode='binary_mask', is an array of shape HW. Otherwise,
182
+ is a dictionary containing the RLE.
183
+ bbox (list(float)): The box around the mask, in XYWH format.
184
+ area (int): The area in pixels of the mask.
185
+ predicted_iou (float): The model's own prediction of the mask's
186
+ quality. This is filtered by the pred_iou_thresh parameter.
187
+ point_coords (list(list(float))): The point coordinates input
188
+ to the model to generate this mask.
189
+ stability_score (float): A measure of the mask's quality. This
190
+ is filtered on using the stability_score_thresh parameter.
191
+ crop_box (list(float)): The crop of the image used to generate
192
+ the mask, given in XYWH format.
193
+ """
194
+
195
+ # Generate masks
196
+ mask_data = self._generate_masks(image)
197
+
198
+ # Encode masks
199
+ if self.output_mode == "coco_rle":
200
+ mask_data["segmentations"] = [
201
+ coco_encode_rle(rle) for rle in mask_data["rles"]
202
+ ]
203
+ elif self.output_mode == "binary_mask":
204
+ mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
205
+ else:
206
+ mask_data["segmentations"] = mask_data["rles"]
207
+
208
+ # Write mask records
209
+ curr_anns = []
210
+ for idx in range(len(mask_data["segmentations"])):
211
+ ann = {
212
+ "segmentation": mask_data["segmentations"][idx],
213
+ "area": area_from_rle(mask_data["rles"][idx]),
214
+ "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
215
+ "predicted_iou": mask_data["iou_preds"][idx].item(),
216
+ "point_coords": [mask_data["points"][idx].tolist()],
217
+ "stability_score": mask_data["stability_score"][idx].item(),
218
+ "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
219
+ }
220
+ curr_anns.append(ann)
221
+
222
+ return curr_anns
223
+
224
+ def _generate_masks(self, image: np.ndarray) -> MaskData:
225
+ orig_size = image.shape[:2]
226
+ crop_boxes, layer_idxs = generate_crop_boxes(
227
+ orig_size, self.crop_n_layers, self.crop_overlap_ratio
228
+ )
229
+
230
+ # Iterate over image crops
231
+ data = MaskData()
232
+ for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
233
+ crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
234
+ data.cat(crop_data)
235
+
236
+ # Remove duplicate masks between crops
237
+ if len(crop_boxes) > 1:
238
+ # Prefer masks from smaller crops
239
+ scores = 1 / box_area(data["crop_boxes"])
240
+ scores = scores.to(data["boxes"].device)
241
+ keep_by_nms = batched_nms(
242
+ data["boxes"].float(),
243
+ scores,
244
+ torch.zeros_like(data["boxes"][:, 0]), # categories
245
+ iou_threshold=self.crop_nms_thresh,
246
+ )
247
+ data.filter(keep_by_nms)
248
+ data.to_numpy()
249
+ return data
250
+
251
+ def _process_crop(
252
+ self,
253
+ image: np.ndarray,
254
+ crop_box: List[int],
255
+ crop_layer_idx: int,
256
+ orig_size: Tuple[int, ...],
257
+ ) -> MaskData:
258
+ # Crop the image and calculate embeddings
259
+ x0, y0, x1, y1 = crop_box
260
+ cropped_im = image[y0:y1, x0:x1, :]
261
+ cropped_im_size = cropped_im.shape[:2]
262
+ self.predictor.set_image(cropped_im)
263
+
264
+ # Get points for this crop
265
+ points_scale = np.array(cropped_im_size)[None, ::-1]
266
+ points_for_image = self.point_grids[crop_layer_idx] * points_scale
267
+
268
+ # Generate masks for this crop in batches
269
+ data = MaskData()
270
+ for (points,) in batch_iterator(self.points_per_batch, points_for_image):
271
+ batch_data = self._process_batch(
272
+ points, cropped_im_size, crop_box, orig_size, normalize=True
273
+ )
274
+ data.cat(batch_data)
275
+ del batch_data
276
+ self.predictor.reset_predictor()
277
+
278
+ # Remove duplicates within this crop.
279
+ keep_by_nms = batched_nms(
280
+ data["boxes"].float(),
281
+ data["iou_preds"],
282
+ torch.zeros_like(data["boxes"][:, 0]), # categories
283
+ iou_threshold=self.box_nms_thresh,
284
+ )
285
+ data.filter(keep_by_nms)
286
+
287
+ # Return to the original image frame
288
+ data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
289
+ data["points"] = uncrop_points(data["points"], crop_box)
290
+ data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
291
+
292
+ return data
293
+
294
+ def _process_batch(
295
+ self,
296
+ points: np.ndarray,
297
+ im_size: Tuple[int, ...],
298
+ crop_box: List[int],
299
+ orig_size: Tuple[int, ...],
300
+ normalize=False,
301
+ ) -> MaskData:
302
+ orig_h, orig_w = orig_size
303
+
304
+ # Run model on this batch
305
+ points = torch.as_tensor(
306
+ points, dtype=torch.float32, device=self.predictor.device
307
+ )
308
+ in_points = self.predictor._transforms.transform_coords(
309
+ points, normalize=normalize, orig_hw=im_size
310
+ )
311
+ in_labels = torch.ones(
312
+ in_points.shape[0], dtype=torch.int, device=in_points.device
313
+ )
314
+ masks, iou_preds, low_res_masks = self.predictor._predict(
315
+ in_points[:, None, :],
316
+ in_labels[:, None],
317
+ multimask_output=self.multimask_output,
318
+ return_logits=True,
319
+ )
320
+
321
+ # Serialize predictions and store in MaskData
322
+ data = MaskData(
323
+ masks=masks.flatten(0, 1),
324
+ iou_preds=iou_preds.flatten(0, 1),
325
+ points=points.repeat_interleave(masks.shape[1], dim=0),
326
+ low_res_masks=low_res_masks.flatten(0, 1),
327
+ )
328
+ del masks
329
+
330
+ if not self.use_m2m:
331
+ # Filter by predicted IoU
332
+ if self.pred_iou_thresh > 0.0:
333
+ keep_mask = data["iou_preds"] > self.pred_iou_thresh
334
+ data.filter(keep_mask)
335
+
336
+ # Calculate and filter by stability score
337
+ data["stability_score"] = calculate_stability_score(
338
+ data["masks"], self.mask_threshold, self.stability_score_offset
339
+ )
340
+ if self.stability_score_thresh > 0.0:
341
+ keep_mask = data["stability_score"] >= self.stability_score_thresh
342
+ data.filter(keep_mask)
343
+ else:
344
+ # One step refinement using previous mask predictions
345
+ in_points = self.predictor._transforms.transform_coords(
346
+ data["points"], normalize=normalize, orig_hw=im_size
347
+ )
348
+ labels = torch.ones(
349
+ in_points.shape[0], dtype=torch.int, device=in_points.device
350
+ )
351
+ masks, ious = self.refine_with_m2m(
352
+ in_points, labels, data["low_res_masks"], self.points_per_batch
353
+ )
354
+ data["masks"] = masks.squeeze(1)
355
+ data["iou_preds"] = ious.squeeze(1)
356
+
357
+ if self.pred_iou_thresh > 0.0:
358
+ keep_mask = data["iou_preds"] > self.pred_iou_thresh
359
+ data.filter(keep_mask)
360
+
361
+ data["stability_score"] = calculate_stability_score(
362
+ data["masks"], self.mask_threshold, self.stability_score_offset
363
+ )
364
+ if self.stability_score_thresh > 0.0:
365
+ keep_mask = data["stability_score"] >= self.stability_score_thresh
366
+ data.filter(keep_mask)
367
+
368
+ # Threshold masks and calculate boxes
369
+ data["masks"] = data["masks"] > self.mask_threshold
370
+ data["boxes"] = batched_mask_to_box(data["masks"])
371
+
372
+ # Filter boxes that touch crop boundaries
373
+ keep_mask = ~is_box_near_crop_edge(
374
+ data["boxes"], crop_box, [0, 0, orig_w, orig_h]
375
+ )
376
+ if not torch.all(keep_mask):
377
+ data.filter(keep_mask)
378
+
379
+ # Compress to RLE
380
+ data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
381
+ data["rles"] = mask_to_rle_pytorch(data["masks"])
382
+ del data["masks"]
383
+
384
+ return data
385
+
386
+ @staticmethod
387
+ def postprocess_small_regions(
388
+ mask_data: MaskData, min_area: int, nms_thresh: float
389
+ ) -> MaskData:
390
+ """
391
+ Removes small disconnected regions and holes in masks, then reruns
392
+ box NMS to remove any new duplicates.
393
+
394
+ Edits mask_data in place.
395
+
396
+ Requires open-cv as a dependency.
397
+ """
398
+ if len(mask_data["rles"]) == 0:
399
+ return mask_data
400
+
401
+ # Filter small disconnected regions and holes
402
+ new_masks = []
403
+ scores = []
404
+ for rle in mask_data["rles"]:
405
+ mask = rle_to_mask(rle)
406
+
407
+ mask, changed = remove_small_regions(mask, min_area, mode="holes")
408
+ unchanged = not changed
409
+ mask, changed = remove_small_regions(mask, min_area, mode="islands")
410
+ unchanged = unchanged and not changed
411
+
412
+ new_masks.append(torch.as_tensor(mask).unsqueeze(0))
413
+ # Give score=0 to changed masks and score=1 to unchanged masks
414
+ # so NMS will prefer ones that didn't need postprocessing
415
+ scores.append(float(unchanged))
416
+
417
+ # Recalculate boxes and remove any new duplicates
418
+ masks = torch.cat(new_masks, dim=0)
419
+ boxes = batched_mask_to_box(masks)
420
+ keep_by_nms = batched_nms(
421
+ boxes.float(),
422
+ torch.as_tensor(scores),
423
+ torch.zeros_like(boxes[:, 0]), # categories
424
+ iou_threshold=nms_thresh,
425
+ )
426
+
427
+ # Only recalculate RLEs for masks that have changed
428
+ for i_mask in keep_by_nms:
429
+ if scores[i_mask] == 0.0:
430
+ mask_torch = masks[i_mask].unsqueeze(0)
431
+ mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
432
+ mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
433
+ mask_data.filter(keep_by_nms)
434
+
435
+ return mask_data
436
+
437
+ def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch):
438
+ new_masks = []
439
+ new_iou_preds = []
440
+
441
+ for cur_points, cur_point_labels, low_res_mask in batch_iterator(
442
+ points_per_batch, points, point_labels, low_res_masks
443
+ ):
444
+ best_masks, best_iou_preds, _ = self.predictor._predict(
445
+ cur_points[:, None, :],
446
+ cur_point_labels[:, None],
447
+ mask_input=low_res_mask[:, None, :],
448
+ multimask_output=False,
449
+ return_logits=True,
450
+ )
451
+ new_masks.append(best_masks)
452
+ new_iou_preds.append(best_iou_preds)
453
+ masks = torch.cat(new_masks, dim=0)
454
+ return masks, torch.cat(new_iou_preds, dim=0)
sam2/build_sam.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import logging
8
+ import os
9
+
10
+ import torch
11
+ from hydra import compose
12
+ from hydra.utils import instantiate
13
+ from omegaconf import OmegaConf
14
+
15
+ import sam2
16
+
17
+ # Check if the user is running Python from the parent directory of the sam2 repo
18
+ # (i.e. the directory where this repo is cloned into) -- this is not supported since
19
+ # it could shadow the sam2 package and cause issues.
20
+ if os.path.isdir(os.path.join(sam2.__path__[0], "sam2")):
21
+ # If the user has "sam2/sam2" in their path, they are likey importing the repo itself
22
+ # as "sam2" rather than importing the "sam2" python package (i.e. "sam2/sam2" directory).
23
+ # This typically happens because the user is running Python from the parent directory
24
+ # that contains the sam2 repo they cloned.
25
+ raise RuntimeError(
26
+ "You're likely running Python from the parent directory of the sam2 repository "
27
+ "(i.e. the directory where https://github.com/facebookresearch/sam2 is cloned into). "
28
+ "This is not supported since the `sam2` Python package could be shadowed by the "
29
+ "repository name (the repository is also named `sam2` and contains the Python package "
30
+ "in `sam2/sam2`). Please run Python from another directory (e.g. from the repo dir "
31
+ "rather than its parent dir, or from your home directory) after installing SAM 2."
32
+ )
33
+
34
+
35
+ HF_MODEL_ID_TO_FILENAMES = {
36
+ "facebook/sam2-hiera-tiny": (
37
+ "configs/sam2/sam2_hiera_t.yaml",
38
+ "sam2_hiera_tiny.pt",
39
+ ),
40
+ "facebook/sam2-hiera-small": (
41
+ "configs/sam2/sam2_hiera_s.yaml",
42
+ "sam2_hiera_small.pt",
43
+ ),
44
+ "facebook/sam2-hiera-base-plus": (
45
+ "configs/sam2/sam2_hiera_b+.yaml",
46
+ "sam2_hiera_base_plus.pt",
47
+ ),
48
+ "facebook/sam2-hiera-large": (
49
+ "configs/sam2/sam2_hiera_l.yaml",
50
+ "sam2_hiera_large.pt",
51
+ ),
52
+ "facebook/sam2.1-hiera-tiny": (
53
+ "configs/sam2.1/sam2.1_hiera_t.yaml",
54
+ "sam2.1_hiera_tiny.pt",
55
+ ),
56
+ "facebook/sam2.1-hiera-small": (
57
+ "configs/sam2.1/sam2.1_hiera_s.yaml",
58
+ "sam2.1_hiera_small.pt",
59
+ ),
60
+ "facebook/sam2.1-hiera-base-plus": (
61
+ "configs/sam2.1/sam2.1_hiera_b+.yaml",
62
+ "sam2.1_hiera_base_plus.pt",
63
+ ),
64
+ "facebook/sam2.1-hiera-large": (
65
+ "configs/sam2.1/sam2.1_hiera_l.yaml",
66
+ "sam2.1_hiera_large.pt",
67
+ ),
68
+ }
69
+
70
+
71
+ def build_sam2(
72
+ config_file,
73
+ ckpt_path=None,
74
+ device="cuda",
75
+ mode="eval",
76
+ hydra_overrides_extra=[],
77
+ apply_postprocessing=True,
78
+ **kwargs,
79
+ ):
80
+
81
+ if apply_postprocessing:
82
+ hydra_overrides_extra = hydra_overrides_extra.copy()
83
+ hydra_overrides_extra += [
84
+ # dynamically fall back to multi-mask if the single mask is not stable
85
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
86
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
87
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
88
+ ]
89
+ # Read config and init model
90
+ cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
91
+ OmegaConf.resolve(cfg)
92
+ model = instantiate(cfg.model, _recursive_=True)
93
+ _load_checkpoint(model, ckpt_path)
94
+ model = model.to(device)
95
+ if mode == "eval":
96
+ model.eval()
97
+ return model
98
+
99
+
100
+ def build_sam2_video_predictor(
101
+ config_file,
102
+ ckpt_path=None,
103
+ device="cuda",
104
+ mode="eval",
105
+ hydra_overrides_extra=[],
106
+ apply_postprocessing=True,
107
+ **kwargs,
108
+ ):
109
+ hydra_overrides = [
110
+ "++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
111
+ ]
112
+ if apply_postprocessing:
113
+ hydra_overrides_extra = hydra_overrides_extra.copy()
114
+ hydra_overrides_extra += [
115
+ # dynamically fall back to multi-mask if the single mask is not stable
116
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
117
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
118
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
119
+ # the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
120
+ "++model.binarize_mask_from_pts_for_mem_enc=true",
121
+ # fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
122
+ "++model.fill_hole_area=8",
123
+ ]
124
+ hydra_overrides.extend(hydra_overrides_extra)
125
+
126
+ # Read config and init model
127
+ cfg = compose(config_name=config_file, overrides=hydra_overrides)
128
+ OmegaConf.resolve(cfg)
129
+ model = instantiate(cfg.model, _recursive_=True)
130
+ _load_checkpoint(model, ckpt_path)
131
+ model = model.to(device)
132
+ if mode == "eval":
133
+ model.eval()
134
+ return model
135
+
136
+
137
+ def _hf_download(model_id):
138
+ from huggingface_hub import hf_hub_download
139
+
140
+ config_name, checkpoint_name = HF_MODEL_ID_TO_FILENAMES[model_id]
141
+ ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
142
+ return config_name, ckpt_path
143
+
144
+
145
+ def build_sam2_hf(model_id, **kwargs):
146
+ config_name, ckpt_path = _hf_download(model_id)
147
+ return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
148
+
149
+
150
+ def build_sam2_video_predictor_hf(model_id, **kwargs):
151
+ config_name, ckpt_path = _hf_download(model_id)
152
+ return build_sam2_video_predictor(
153
+ config_file=config_name, ckpt_path=ckpt_path, **kwargs
154
+ )
155
+
156
+
157
+ def _load_checkpoint(model, ckpt_path):
158
+ if ckpt_path is not None:
159
+ sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"]
160
+ missing_keys, unexpected_keys = model.load_state_dict(sd)
161
+ if missing_keys:
162
+ logging.error(missing_keys)
163
+ raise RuntimeError()
164
+ if unexpected_keys:
165
+ logging.error(unexpected_keys)
166
+ raise RuntimeError()
167
+ logging.info("Loaded checkpoint sucessfully")
sam2/configs/sam2.1/sam2.1_hiera_b+.yaml ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 112
12
+ num_heads: 2
13
+ neck:
14
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
15
+ position_encoding:
16
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
17
+ num_pos_feats: 256
18
+ normalize: true
19
+ scale: null
20
+ temperature: 10000
21
+ d_model: 256
22
+ backbone_channel_list: [896, 448, 224, 112]
23
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
24
+ fpn_interp_model: nearest
25
+
26
+ memory_attention:
27
+ _target_: sam2.modeling.memory_attention.MemoryAttention
28
+ d_model: 256
29
+ pos_enc_at_input: true
30
+ layer:
31
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
32
+ activation: relu
33
+ dim_feedforward: 2048
34
+ dropout: 0.1
35
+ pos_enc_at_attn: false
36
+ self_attention:
37
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
38
+ rope_theta: 10000.0
39
+ feat_sizes: [32, 32]
40
+ embedding_dim: 256
41
+ num_heads: 1
42
+ downsample_rate: 1
43
+ dropout: 0.1
44
+ d_model: 256
45
+ pos_enc_at_cross_attn_keys: true
46
+ pos_enc_at_cross_attn_queries: false
47
+ cross_attention:
48
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
49
+ rope_theta: 10000.0
50
+ feat_sizes: [32, 32]
51
+ rope_k_repeat: True
52
+ embedding_dim: 256
53
+ num_heads: 1
54
+ downsample_rate: 1
55
+ dropout: 0.1
56
+ kv_in_dim: 64
57
+ num_layers: 4
58
+
59
+ memory_encoder:
60
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
61
+ out_dim: 64
62
+ position_encoding:
63
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
64
+ num_pos_feats: 64
65
+ normalize: true
66
+ scale: null
67
+ temperature: 10000
68
+ mask_downsampler:
69
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
70
+ kernel_size: 3
71
+ stride: 2
72
+ padding: 1
73
+ fuser:
74
+ _target_: sam2.modeling.memory_encoder.Fuser
75
+ layer:
76
+ _target_: sam2.modeling.memory_encoder.CXBlock
77
+ dim: 256
78
+ kernel_size: 7
79
+ padding: 3
80
+ layer_scale_init_value: 1e-6
81
+ use_dwconv: True # depth-wise convs
82
+ num_layers: 2
83
+
84
+ num_maskmem: 7
85
+ image_size: 1024
86
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
87
+ sigmoid_scale_for_mem_enc: 20.0
88
+ sigmoid_bias_for_mem_enc: -10.0
89
+ use_mask_input_as_output_without_sam: true
90
+ # Memory
91
+ directly_add_no_mem_embed: true
92
+ no_obj_embed_spatial: true
93
+ # use high-resolution feature map in the SAM mask decoder
94
+ use_high_res_features_in_sam: true
95
+ # output 3 masks on the first click on initial conditioning frames
96
+ multimask_output_in_sam: true
97
+ # SAM heads
98
+ iou_prediction_use_sigmoid: True
99
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
100
+ use_obj_ptrs_in_encoder: true
101
+ add_tpos_enc_to_obj_ptrs: true
102
+ proj_tpos_enc_in_obj_ptrs: true
103
+ use_signed_tpos_enc_to_obj_ptrs: true
104
+ only_obj_ptrs_in_the_past_for_eval: true
105
+ # object occlusion prediction
106
+ pred_obj_scores: true
107
+ pred_obj_scores_mlp: true
108
+ fixed_no_obj_ptr: true
109
+ # multimask tracking settings
110
+ multimask_output_for_tracking: true
111
+ use_multimask_token_for_obj_ptr: true
112
+ multimask_min_pt_num: 0
113
+ multimask_max_pt_num: 1
114
+ use_mlp_for_obj_ptr_proj: true
115
+ # Compilation flag
116
+ compile_image_encoder: False
sam2/configs/sam2.1/sam2.1_hiera_l.yaml ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 144
12
+ num_heads: 2
13
+ stages: [2, 6, 36, 4]
14
+ global_att_blocks: [23, 33, 43]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ window_spec: [8, 4, 16, 8]
17
+ neck:
18
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
19
+ position_encoding:
20
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
21
+ num_pos_feats: 256
22
+ normalize: true
23
+ scale: null
24
+ temperature: 10000
25
+ d_model: 256
26
+ backbone_channel_list: [1152, 576, 288, 144]
27
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
28
+ fpn_interp_model: nearest
29
+
30
+ memory_attention:
31
+ _target_: sam2.modeling.memory_attention.MemoryAttention
32
+ d_model: 256
33
+ pos_enc_at_input: true
34
+ layer:
35
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
36
+ activation: relu
37
+ dim_feedforward: 2048
38
+ dropout: 0.1
39
+ pos_enc_at_attn: false
40
+ self_attention:
41
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
42
+ rope_theta: 10000.0
43
+ feat_sizes: [32, 32]
44
+ embedding_dim: 256
45
+ num_heads: 1
46
+ downsample_rate: 1
47
+ dropout: 0.1
48
+ d_model: 256
49
+ pos_enc_at_cross_attn_keys: true
50
+ pos_enc_at_cross_attn_queries: false
51
+ cross_attention:
52
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
53
+ rope_theta: 10000.0
54
+ feat_sizes: [32, 32]
55
+ rope_k_repeat: True
56
+ embedding_dim: 256
57
+ num_heads: 1
58
+ downsample_rate: 1
59
+ dropout: 0.1
60
+ kv_in_dim: 64
61
+ num_layers: 4
62
+
63
+ memory_encoder:
64
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
65
+ out_dim: 64
66
+ position_encoding:
67
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
68
+ num_pos_feats: 64
69
+ normalize: true
70
+ scale: null
71
+ temperature: 10000
72
+ mask_downsampler:
73
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
74
+ kernel_size: 3
75
+ stride: 2
76
+ padding: 1
77
+ fuser:
78
+ _target_: sam2.modeling.memory_encoder.Fuser
79
+ layer:
80
+ _target_: sam2.modeling.memory_encoder.CXBlock
81
+ dim: 256
82
+ kernel_size: 7
83
+ padding: 3
84
+ layer_scale_init_value: 1e-6
85
+ use_dwconv: True # depth-wise convs
86
+ num_layers: 2
87
+
88
+ num_maskmem: 7
89
+ image_size: 1024
90
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
91
+ sigmoid_scale_for_mem_enc: 20.0
92
+ sigmoid_bias_for_mem_enc: -10.0
93
+ use_mask_input_as_output_without_sam: true
94
+ # Memory
95
+ directly_add_no_mem_embed: true
96
+ no_obj_embed_spatial: true
97
+ # use high-resolution feature map in the SAM mask decoder
98
+ use_high_res_features_in_sam: true
99
+ # output 3 masks on the first click on initial conditioning frames
100
+ multimask_output_in_sam: true
101
+ # SAM heads
102
+ iou_prediction_use_sigmoid: True
103
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
104
+ use_obj_ptrs_in_encoder: true
105
+ add_tpos_enc_to_obj_ptrs: true
106
+ proj_tpos_enc_in_obj_ptrs: true
107
+ use_signed_tpos_enc_to_obj_ptrs: true
108
+ only_obj_ptrs_in_the_past_for_eval: true
109
+ # object occlusion prediction
110
+ pred_obj_scores: true
111
+ pred_obj_scores_mlp: true
112
+ fixed_no_obj_ptr: true
113
+ # multimask tracking settings
114
+ multimask_output_for_tracking: true
115
+ use_multimask_token_for_obj_ptr: true
116
+ multimask_min_pt_num: 0
117
+ multimask_max_pt_num: 1
118
+ use_mlp_for_obj_ptr_proj: true
119
+ # Compilation flag
120
+ compile_image_encoder: False
sam2/configs/sam2.1/sam2.1_hiera_s.yaml ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 96
12
+ num_heads: 1
13
+ stages: [1, 2, 11, 2]
14
+ global_att_blocks: [7, 10, 13]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ neck:
17
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
18
+ position_encoding:
19
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
20
+ num_pos_feats: 256
21
+ normalize: true
22
+ scale: null
23
+ temperature: 10000
24
+ d_model: 256
25
+ backbone_channel_list: [768, 384, 192, 96]
26
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
27
+ fpn_interp_model: nearest
28
+
29
+ memory_attention:
30
+ _target_: sam2.modeling.memory_attention.MemoryAttention
31
+ d_model: 256
32
+ pos_enc_at_input: true
33
+ layer:
34
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
35
+ activation: relu
36
+ dim_feedforward: 2048
37
+ dropout: 0.1
38
+ pos_enc_at_attn: false
39
+ self_attention:
40
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
41
+ rope_theta: 10000.0
42
+ feat_sizes: [32, 32]
43
+ embedding_dim: 256
44
+ num_heads: 1
45
+ downsample_rate: 1
46
+ dropout: 0.1
47
+ d_model: 256
48
+ pos_enc_at_cross_attn_keys: true
49
+ pos_enc_at_cross_attn_queries: false
50
+ cross_attention:
51
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
52
+ rope_theta: 10000.0
53
+ feat_sizes: [32, 32]
54
+ rope_k_repeat: True
55
+ embedding_dim: 256
56
+ num_heads: 1
57
+ downsample_rate: 1
58
+ dropout: 0.1
59
+ kv_in_dim: 64
60
+ num_layers: 4
61
+
62
+ memory_encoder:
63
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
64
+ out_dim: 64
65
+ position_encoding:
66
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
67
+ num_pos_feats: 64
68
+ normalize: true
69
+ scale: null
70
+ temperature: 10000
71
+ mask_downsampler:
72
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
73
+ kernel_size: 3
74
+ stride: 2
75
+ padding: 1
76
+ fuser:
77
+ _target_: sam2.modeling.memory_encoder.Fuser
78
+ layer:
79
+ _target_: sam2.modeling.memory_encoder.CXBlock
80
+ dim: 256
81
+ kernel_size: 7
82
+ padding: 3
83
+ layer_scale_init_value: 1e-6
84
+ use_dwconv: True # depth-wise convs
85
+ num_layers: 2
86
+
87
+ num_maskmem: 7
88
+ image_size: 1024
89
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
90
+ sigmoid_scale_for_mem_enc: 20.0
91
+ sigmoid_bias_for_mem_enc: -10.0
92
+ use_mask_input_as_output_without_sam: true
93
+ # Memory
94
+ directly_add_no_mem_embed: true
95
+ no_obj_embed_spatial: true
96
+ # use high-resolution feature map in the SAM mask decoder
97
+ use_high_res_features_in_sam: true
98
+ # output 3 masks on the first click on initial conditioning frames
99
+ multimask_output_in_sam: true
100
+ # SAM heads
101
+ iou_prediction_use_sigmoid: True
102
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
103
+ use_obj_ptrs_in_encoder: true
104
+ add_tpos_enc_to_obj_ptrs: true
105
+ proj_tpos_enc_in_obj_ptrs: true
106
+ use_signed_tpos_enc_to_obj_ptrs: true
107
+ only_obj_ptrs_in_the_past_for_eval: true
108
+ # object occlusion prediction
109
+ pred_obj_scores: true
110
+ pred_obj_scores_mlp: true
111
+ fixed_no_obj_ptr: true
112
+ # multimask tracking settings
113
+ multimask_output_for_tracking: true
114
+ use_multimask_token_for_obj_ptr: true
115
+ multimask_min_pt_num: 0
116
+ multimask_max_pt_num: 1
117
+ use_mlp_for_obj_ptr_proj: true
118
+ # Compilation flag
119
+ compile_image_encoder: False
sam2/configs/sam2.1/sam2.1_hiera_t.yaml ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 96
12
+ num_heads: 1
13
+ stages: [1, 2, 7, 2]
14
+ global_att_blocks: [5, 7, 9]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ neck:
17
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
18
+ position_encoding:
19
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
20
+ num_pos_feats: 256
21
+ normalize: true
22
+ scale: null
23
+ temperature: 10000
24
+ d_model: 256
25
+ backbone_channel_list: [768, 384, 192, 96]
26
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
27
+ fpn_interp_model: nearest
28
+
29
+ memory_attention:
30
+ _target_: sam2.modeling.memory_attention.MemoryAttention
31
+ d_model: 256
32
+ pos_enc_at_input: true
33
+ layer:
34
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
35
+ activation: relu
36
+ dim_feedforward: 2048
37
+ dropout: 0.1
38
+ pos_enc_at_attn: false
39
+ self_attention:
40
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
41
+ rope_theta: 10000.0
42
+ feat_sizes: [32, 32]
43
+ embedding_dim: 256
44
+ num_heads: 1
45
+ downsample_rate: 1
46
+ dropout: 0.1
47
+ d_model: 256
48
+ pos_enc_at_cross_attn_keys: true
49
+ pos_enc_at_cross_attn_queries: false
50
+ cross_attention:
51
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
52
+ rope_theta: 10000.0
53
+ feat_sizes: [32, 32]
54
+ rope_k_repeat: True
55
+ embedding_dim: 256
56
+ num_heads: 1
57
+ downsample_rate: 1
58
+ dropout: 0.1
59
+ kv_in_dim: 64
60
+ num_layers: 4
61
+
62
+ memory_encoder:
63
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
64
+ out_dim: 64
65
+ position_encoding:
66
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
67
+ num_pos_feats: 64
68
+ normalize: true
69
+ scale: null
70
+ temperature: 10000
71
+ mask_downsampler:
72
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
73
+ kernel_size: 3
74
+ stride: 2
75
+ padding: 1
76
+ fuser:
77
+ _target_: sam2.modeling.memory_encoder.Fuser
78
+ layer:
79
+ _target_: sam2.modeling.memory_encoder.CXBlock
80
+ dim: 256
81
+ kernel_size: 7
82
+ padding: 3
83
+ layer_scale_init_value: 1e-6
84
+ use_dwconv: True # depth-wise convs
85
+ num_layers: 2
86
+
87
+ num_maskmem: 7
88
+ image_size: 1024
89
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
90
+ # SAM decoder
91
+ sigmoid_scale_for_mem_enc: 20.0
92
+ sigmoid_bias_for_mem_enc: -10.0
93
+ use_mask_input_as_output_without_sam: true
94
+ # Memory
95
+ directly_add_no_mem_embed: true
96
+ no_obj_embed_spatial: true
97
+ # use high-resolution feature map in the SAM mask decoder
98
+ use_high_res_features_in_sam: true
99
+ # output 3 masks on the first click on initial conditioning frames
100
+ multimask_output_in_sam: true
101
+ # SAM heads
102
+ iou_prediction_use_sigmoid: True
103
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
104
+ use_obj_ptrs_in_encoder: true
105
+ add_tpos_enc_to_obj_ptrs: true
106
+ proj_tpos_enc_in_obj_ptrs: true
107
+ use_signed_tpos_enc_to_obj_ptrs: true
108
+ only_obj_ptrs_in_the_past_for_eval: true
109
+ # object occlusion prediction
110
+ pred_obj_scores: true
111
+ pred_obj_scores_mlp: true
112
+ fixed_no_obj_ptr: true
113
+ # multimask tracking settings
114
+ multimask_output_for_tracking: true
115
+ use_multimask_token_for_obj_ptr: true
116
+ multimask_min_pt_num: 0
117
+ multimask_max_pt_num: 1
118
+ use_mlp_for_obj_ptr_proj: true
119
+ # Compilation flag
120
+ # HieraT does not currently support compilation, should always be set to False
121
+ compile_image_encoder: False
sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ scratch:
4
+ resolution: 1024
5
+ train_batch_size: 1
6
+ num_train_workers: 10
7
+ num_frames: 8
8
+ max_num_objects: 3
9
+ base_lr: 5.0e-6
10
+ vision_lr: 3.0e-06
11
+ phases_per_epoch: 1
12
+ num_epochs: 40
13
+
14
+ dataset:
15
+ # PATHS to Dataset
16
+ img_folder: null # PATH to MOSE JPEGImages folder
17
+ gt_folder: null # PATH to MOSE Annotations folder
18
+ file_list_txt: training/assets/MOSE_sample_train_list.txt # Optional PATH to filelist containing a subset of videos to be used for training
19
+ multiplier: 2
20
+
21
+ # Video transforms
22
+ vos:
23
+ train_transforms:
24
+ - _target_: training.dataset.transforms.ComposeAPI
25
+ transforms:
26
+ - _target_: training.dataset.transforms.RandomHorizontalFlip
27
+ consistent_transform: True
28
+ - _target_: training.dataset.transforms.RandomAffine
29
+ degrees: 25
30
+ shear: 20
31
+ image_interpolation: bilinear
32
+ consistent_transform: True
33
+ - _target_: training.dataset.transforms.RandomResizeAPI
34
+ sizes: ${scratch.resolution}
35
+ square: true
36
+ consistent_transform: True
37
+ - _target_: training.dataset.transforms.ColorJitter
38
+ consistent_transform: True
39
+ brightness: 0.1
40
+ contrast: 0.03
41
+ saturation: 0.03
42
+ hue: null
43
+ - _target_: training.dataset.transforms.RandomGrayscale
44
+ p: 0.05
45
+ consistent_transform: True
46
+ - _target_: training.dataset.transforms.ColorJitter
47
+ consistent_transform: False
48
+ brightness: 0.1
49
+ contrast: 0.05
50
+ saturation: 0.05
51
+ hue: null
52
+ - _target_: training.dataset.transforms.ToTensorAPI
53
+ - _target_: training.dataset.transforms.NormalizeAPI
54
+ mean: [0.485, 0.456, 0.406]
55
+ std: [0.229, 0.224, 0.225]
56
+
57
+ trainer:
58
+ _target_: training.trainer.Trainer
59
+ mode: train_only
60
+ max_epochs: ${times:${scratch.num_epochs},${scratch.phases_per_epoch}}
61
+ accelerator: cuda
62
+ seed_value: 123
63
+
64
+ model:
65
+ _target_: training.model.sam2.SAM2Train
66
+ image_encoder:
67
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
68
+ scalp: 1
69
+ trunk:
70
+ _target_: sam2.modeling.backbones.hieradet.Hiera
71
+ embed_dim: 112
72
+ num_heads: 2
73
+ drop_path_rate: 0.1
74
+ neck:
75
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
76
+ position_encoding:
77
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
78
+ num_pos_feats: 256
79
+ normalize: true
80
+ scale: null
81
+ temperature: 10000
82
+ d_model: 256
83
+ backbone_channel_list: [896, 448, 224, 112]
84
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
85
+ fpn_interp_model: nearest
86
+
87
+ memory_attention:
88
+ _target_: sam2.modeling.memory_attention.MemoryAttention
89
+ d_model: 256
90
+ pos_enc_at_input: true
91
+ layer:
92
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
93
+ activation: relu
94
+ dim_feedforward: 2048
95
+ dropout: 0.1
96
+ pos_enc_at_attn: false
97
+ self_attention:
98
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
99
+ rope_theta: 10000.0
100
+ feat_sizes: [32, 32]
101
+ embedding_dim: 256
102
+ num_heads: 1
103
+ downsample_rate: 1
104
+ dropout: 0.1
105
+ d_model: 256
106
+ pos_enc_at_cross_attn_keys: true
107
+ pos_enc_at_cross_attn_queries: false
108
+ cross_attention:
109
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
110
+ rope_theta: 10000.0
111
+ feat_sizes: [32, 32]
112
+ rope_k_repeat: True
113
+ embedding_dim: 256
114
+ num_heads: 1
115
+ downsample_rate: 1
116
+ dropout: 0.1
117
+ kv_in_dim: 64
118
+ num_layers: 4
119
+
120
+ memory_encoder:
121
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
122
+ out_dim: 64
123
+ position_encoding:
124
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
125
+ num_pos_feats: 64
126
+ normalize: true
127
+ scale: null
128
+ temperature: 10000
129
+ mask_downsampler:
130
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
131
+ kernel_size: 3
132
+ stride: 2
133
+ padding: 1
134
+ fuser:
135
+ _target_: sam2.modeling.memory_encoder.Fuser
136
+ layer:
137
+ _target_: sam2.modeling.memory_encoder.CXBlock
138
+ dim: 256
139
+ kernel_size: 7
140
+ padding: 3
141
+ layer_scale_init_value: 1e-6
142
+ use_dwconv: True # depth-wise convs
143
+ num_layers: 2
144
+
145
+ num_maskmem: 7
146
+ image_size: ${scratch.resolution}
147
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
148
+ sigmoid_scale_for_mem_enc: 20.0
149
+ sigmoid_bias_for_mem_enc: -10.0
150
+ use_mask_input_as_output_without_sam: true
151
+ # Memory
152
+ directly_add_no_mem_embed: true
153
+ no_obj_embed_spatial: true
154
+ # use high-resolution feature map in the SAM mask decoder
155
+ use_high_res_features_in_sam: true
156
+ # output 3 masks on the first click on initial conditioning frames
157
+ multimask_output_in_sam: true
158
+ # SAM heads
159
+ iou_prediction_use_sigmoid: True
160
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
161
+ use_obj_ptrs_in_encoder: true
162
+ add_tpos_enc_to_obj_ptrs: true
163
+ proj_tpos_enc_in_obj_ptrs: true
164
+ use_signed_tpos_enc_to_obj_ptrs: true
165
+ only_obj_ptrs_in_the_past_for_eval: true
166
+ # object occlusion prediction
167
+ pred_obj_scores: true
168
+ pred_obj_scores_mlp: true
169
+ fixed_no_obj_ptr: true
170
+ # multimask tracking settings
171
+ multimask_output_for_tracking: true
172
+ use_multimask_token_for_obj_ptr: true
173
+ multimask_min_pt_num: 0
174
+ multimask_max_pt_num: 1
175
+ use_mlp_for_obj_ptr_proj: true
176
+ # Compilation flag
177
+ # compile_image_encoder: False
178
+
179
+ ####### Training specific params #######
180
+ # box/point input and corrections
181
+ prob_to_use_pt_input_for_train: 0.5
182
+ prob_to_use_pt_input_for_eval: 0.0
183
+ prob_to_use_box_input_for_train: 0.5 # 0.5*0.5 = 0.25 prob to use box instead of points
184
+ prob_to_use_box_input_for_eval: 0.0
185
+ prob_to_sample_from_gt_for_train: 0.1 # with a small prob, sampling correction points from GT mask instead of prediction errors
186
+ num_frames_to_correct_for_train: 2 # iteratively sample on random 1~2 frames (always include the first frame)
187
+ num_frames_to_correct_for_eval: 1 # only iteratively sample on first frame
188
+ rand_frames_to_correct_for_train: True # random #init-cond-frame ~ 2
189
+ add_all_frames_to_correct_as_cond: True # when a frame receives a correction click, it becomes a conditioning frame (even if it's not initially a conditioning frame)
190
+ # maximum 2 initial conditioning frames
191
+ num_init_cond_frames_for_train: 2
192
+ rand_init_cond_frames_for_train: True # random 1~2
193
+ num_correction_pt_per_frame: 7
194
+ use_act_ckpt_iterative_pt_sampling: false
195
+
196
+
197
+
198
+ num_init_cond_frames_for_eval: 1 # only mask on the first frame
199
+ forward_backbone_per_frame_for_eval: True
200
+
201
+
202
+ data:
203
+ train:
204
+ _target_: training.dataset.sam2_datasets.TorchTrainMixedDataset
205
+ phases_per_epoch: ${scratch.phases_per_epoch}
206
+ batch_sizes:
207
+ - ${scratch.train_batch_size}
208
+
209
+ datasets:
210
+ - _target_: training.dataset.utils.RepeatFactorWrapper
211
+ dataset:
212
+ _target_: training.dataset.utils.ConcatDataset
213
+ datasets:
214
+ - _target_: training.dataset.vos_dataset.VOSDataset
215
+ transforms: ${vos.train_transforms}
216
+ training: true
217
+ video_dataset:
218
+ _target_: training.dataset.vos_raw_dataset.PNGRawDataset
219
+ img_folder: ${dataset.img_folder}
220
+ gt_folder: ${dataset.gt_folder}
221
+ file_list_txt: ${dataset.file_list_txt}
222
+ sampler:
223
+ _target_: training.dataset.vos_sampler.RandomUniformSampler
224
+ num_frames: ${scratch.num_frames}
225
+ max_num_objects: ${scratch.max_num_objects}
226
+ multiplier: ${dataset.multiplier}
227
+ shuffle: True
228
+ num_workers: ${scratch.num_train_workers}
229
+ pin_memory: True
230
+ drop_last: True
231
+ collate_fn:
232
+ _target_: training.utils.data_utils.collate_fn
233
+ _partial_: true
234
+ dict_key: all
235
+
236
+ optim:
237
+ amp:
238
+ enabled: True
239
+ amp_dtype: bfloat16
240
+
241
+ optimizer:
242
+ _target_: torch.optim.AdamW
243
+
244
+ gradient_clip:
245
+ _target_: training.optimizer.GradientClipper
246
+ max_norm: 0.1
247
+ norm_type: 2
248
+
249
+ param_group_modifiers:
250
+ - _target_: training.optimizer.layer_decay_param_modifier
251
+ _partial_: True
252
+ layer_decay_value: 0.9
253
+ apply_to: 'image_encoder.trunk'
254
+ overrides:
255
+ - pattern: '*pos_embed*'
256
+ value: 1.0
257
+
258
+ options:
259
+ lr:
260
+ - scheduler:
261
+ _target_: fvcore.common.param_scheduler.CosineParamScheduler
262
+ start_value: ${scratch.base_lr}
263
+ end_value: ${divide:${scratch.base_lr},10}
264
+ - scheduler:
265
+ _target_: fvcore.common.param_scheduler.CosineParamScheduler
266
+ start_value: ${scratch.vision_lr}
267
+ end_value: ${divide:${scratch.vision_lr},10}
268
+ param_names:
269
+ - 'image_encoder.*'
270
+ weight_decay:
271
+ - scheduler:
272
+ _target_: fvcore.common.param_scheduler.ConstantParamScheduler
273
+ value: 0.1
274
+ - scheduler:
275
+ _target_: fvcore.common.param_scheduler.ConstantParamScheduler
276
+ value: 0.0
277
+ param_names:
278
+ - '*bias*'
279
+ module_cls_names: ['torch.nn.LayerNorm']
280
+
281
+ loss:
282
+ all:
283
+ _target_: training.loss_fns.MultiStepMultiMasksAndIous
284
+ weight_dict:
285
+ loss_mask: 20
286
+ loss_dice: 1
287
+ loss_iou: 1
288
+ loss_class: 1
289
+ supervise_all_iou: true
290
+ iou_use_l1_loss: true
291
+ pred_obj_scores: true
292
+ focal_gamma_obj_score: 0.0
293
+ focal_alpha_obj_score: -1.0
294
+
295
+ distributed:
296
+ backend: nccl
297
+ find_unused_parameters: True
298
+
299
+ logging:
300
+ tensorboard_writer:
301
+ _target_: training.utils.logger.make_tensorboard_logger
302
+ log_dir: ${launcher.experiment_log_dir}/tensorboard
303
+ flush_secs: 120
304
+ should_log: True
305
+ log_dir: ${launcher.experiment_log_dir}/logs
306
+ log_freq: 10
307
+
308
+ # initialize from a SAM 2 checkpoint
309
+ checkpoint:
310
+ save_dir: ${launcher.experiment_log_dir}/checkpoints
311
+ save_freq: 0 # 0 only last checkpoint is saved.
312
+ model_weight_initializer:
313
+ _partial_: True
314
+ _target_: training.utils.checkpoint_utils.load_state_dict_into_model
315
+ strict: True
316
+ ignore_unexpected_keys: null
317
+ ignore_missing_keys: null
318
+
319
+ state_dict:
320
+ _target_: training.utils.checkpoint_utils.load_checkpoint_and_apply_kernels
321
+ checkpoint_path: ./checkpoints/sam2.1_hiera_base_plus.pt # PATH to SAM 2.1 checkpoint
322
+ ckpt_state_dict_keys: ['model']
323
+
324
+ launcher:
325
+ num_nodes: 1
326
+ gpus_per_node: 8
327
+ experiment_log_dir: null # Path to log directory, defaults to ./sam2_logs/${config_name}
328
+
329
+ # SLURM args if running on a cluster
330
+ submitit:
331
+ partition: null
332
+ account: null
333
+ qos: null
334
+ cpus_per_task: 10
335
+ use_cluster: false
336
+ timeout_hour: 24
337
+ name: null
338
+ port_range: [10000, 65000]
339
+
sam2/configs/sam2/sam2_hiera_b+.yaml ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 112
12
+ num_heads: 2
13
+ neck:
14
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
15
+ position_encoding:
16
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
17
+ num_pos_feats: 256
18
+ normalize: true
19
+ scale: null
20
+ temperature: 10000
21
+ d_model: 256
22
+ backbone_channel_list: [896, 448, 224, 112]
23
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
24
+ fpn_interp_model: nearest
25
+
26
+ memory_attention:
27
+ _target_: sam2.modeling.memory_attention.MemoryAttention
28
+ d_model: 256
29
+ pos_enc_at_input: true
30
+ layer:
31
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
32
+ activation: relu
33
+ dim_feedforward: 2048
34
+ dropout: 0.1
35
+ pos_enc_at_attn: false
36
+ self_attention:
37
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
38
+ rope_theta: 10000.0
39
+ feat_sizes: [32, 32]
40
+ embedding_dim: 256
41
+ num_heads: 1
42
+ downsample_rate: 1
43
+ dropout: 0.1
44
+ d_model: 256
45
+ pos_enc_at_cross_attn_keys: true
46
+ pos_enc_at_cross_attn_queries: false
47
+ cross_attention:
48
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
49
+ rope_theta: 10000.0
50
+ feat_sizes: [32, 32]
51
+ rope_k_repeat: True
52
+ embedding_dim: 256
53
+ num_heads: 1
54
+ downsample_rate: 1
55
+ dropout: 0.1
56
+ kv_in_dim: 64
57
+ num_layers: 4
58
+
59
+ memory_encoder:
60
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
61
+ out_dim: 64
62
+ position_encoding:
63
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
64
+ num_pos_feats: 64
65
+ normalize: true
66
+ scale: null
67
+ temperature: 10000
68
+ mask_downsampler:
69
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
70
+ kernel_size: 3
71
+ stride: 2
72
+ padding: 1
73
+ fuser:
74
+ _target_: sam2.modeling.memory_encoder.Fuser
75
+ layer:
76
+ _target_: sam2.modeling.memory_encoder.CXBlock
77
+ dim: 256
78
+ kernel_size: 7
79
+ padding: 3
80
+ layer_scale_init_value: 1e-6
81
+ use_dwconv: True # depth-wise convs
82
+ num_layers: 2
83
+
84
+ num_maskmem: 7
85
+ image_size: 1024
86
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
87
+ sigmoid_scale_for_mem_enc: 20.0
88
+ sigmoid_bias_for_mem_enc: -10.0
89
+ use_mask_input_as_output_without_sam: true
90
+ # Memory
91
+ directly_add_no_mem_embed: true
92
+ # use high-resolution feature map in the SAM mask decoder
93
+ use_high_res_features_in_sam: true
94
+ # output 3 masks on the first click on initial conditioning frames
95
+ multimask_output_in_sam: true
96
+ # SAM heads
97
+ iou_prediction_use_sigmoid: True
98
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
99
+ use_obj_ptrs_in_encoder: true
100
+ add_tpos_enc_to_obj_ptrs: false
101
+ only_obj_ptrs_in_the_past_for_eval: true
102
+ # object occlusion prediction
103
+ pred_obj_scores: true
104
+ pred_obj_scores_mlp: true
105
+ fixed_no_obj_ptr: true
106
+ # multimask tracking settings
107
+ multimask_output_for_tracking: true
108
+ use_multimask_token_for_obj_ptr: true
109
+ multimask_min_pt_num: 0
110
+ multimask_max_pt_num: 1
111
+ use_mlp_for_obj_ptr_proj: true
112
+ # Compilation flag
113
+ compile_image_encoder: False
sam2/configs/sam2/sam2_hiera_l.yaml ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 144
12
+ num_heads: 2
13
+ stages: [2, 6, 36, 4]
14
+ global_att_blocks: [23, 33, 43]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ window_spec: [8, 4, 16, 8]
17
+ neck:
18
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
19
+ position_encoding:
20
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
21
+ num_pos_feats: 256
22
+ normalize: true
23
+ scale: null
24
+ temperature: 10000
25
+ d_model: 256
26
+ backbone_channel_list: [1152, 576, 288, 144]
27
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
28
+ fpn_interp_model: nearest
29
+
30
+ memory_attention:
31
+ _target_: sam2.modeling.memory_attention.MemoryAttention
32
+ d_model: 256
33
+ pos_enc_at_input: true
34
+ layer:
35
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
36
+ activation: relu
37
+ dim_feedforward: 2048
38
+ dropout: 0.1
39
+ pos_enc_at_attn: false
40
+ self_attention:
41
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
42
+ rope_theta: 10000.0
43
+ feat_sizes: [32, 32]
44
+ embedding_dim: 256
45
+ num_heads: 1
46
+ downsample_rate: 1
47
+ dropout: 0.1
48
+ d_model: 256
49
+ pos_enc_at_cross_attn_keys: true
50
+ pos_enc_at_cross_attn_queries: false
51
+ cross_attention:
52
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
53
+ rope_theta: 10000.0
54
+ feat_sizes: [32, 32]
55
+ rope_k_repeat: True
56
+ embedding_dim: 256
57
+ num_heads: 1
58
+ downsample_rate: 1
59
+ dropout: 0.1
60
+ kv_in_dim: 64
61
+ num_layers: 4
62
+
63
+ memory_encoder:
64
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
65
+ out_dim: 64
66
+ position_encoding:
67
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
68
+ num_pos_feats: 64
69
+ normalize: true
70
+ scale: null
71
+ temperature: 10000
72
+ mask_downsampler:
73
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
74
+ kernel_size: 3
75
+ stride: 2
76
+ padding: 1
77
+ fuser:
78
+ _target_: sam2.modeling.memory_encoder.Fuser
79
+ layer:
80
+ _target_: sam2.modeling.memory_encoder.CXBlock
81
+ dim: 256
82
+ kernel_size: 7
83
+ padding: 3
84
+ layer_scale_init_value: 1e-6
85
+ use_dwconv: True # depth-wise convs
86
+ num_layers: 2
87
+
88
+ num_maskmem: 7
89
+ image_size: 1024
90
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
91
+ sigmoid_scale_for_mem_enc: 20.0
92
+ sigmoid_bias_for_mem_enc: -10.0
93
+ use_mask_input_as_output_without_sam: true
94
+ # Memory
95
+ directly_add_no_mem_embed: true
96
+ # use high-resolution feature map in the SAM mask decoder
97
+ use_high_res_features_in_sam: true
98
+ # output 3 masks on the first click on initial conditioning frames
99
+ multimask_output_in_sam: true
100
+ # SAM heads
101
+ iou_prediction_use_sigmoid: True
102
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
103
+ use_obj_ptrs_in_encoder: true
104
+ add_tpos_enc_to_obj_ptrs: false
105
+ only_obj_ptrs_in_the_past_for_eval: true
106
+ # object occlusion prediction
107
+ pred_obj_scores: true
108
+ pred_obj_scores_mlp: true
109
+ fixed_no_obj_ptr: true
110
+ # multimask tracking settings
111
+ multimask_output_for_tracking: true
112
+ use_multimask_token_for_obj_ptr: true
113
+ multimask_min_pt_num: 0
114
+ multimask_max_pt_num: 1
115
+ use_mlp_for_obj_ptr_proj: true
116
+ # Compilation flag
117
+ compile_image_encoder: False
sam2/configs/sam2/sam2_hiera_s.yaml ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 96
12
+ num_heads: 1
13
+ stages: [1, 2, 11, 2]
14
+ global_att_blocks: [7, 10, 13]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ neck:
17
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
18
+ position_encoding:
19
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
20
+ num_pos_feats: 256
21
+ normalize: true
22
+ scale: null
23
+ temperature: 10000
24
+ d_model: 256
25
+ backbone_channel_list: [768, 384, 192, 96]
26
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
27
+ fpn_interp_model: nearest
28
+
29
+ memory_attention:
30
+ _target_: sam2.modeling.memory_attention.MemoryAttention
31
+ d_model: 256
32
+ pos_enc_at_input: true
33
+ layer:
34
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
35
+ activation: relu
36
+ dim_feedforward: 2048
37
+ dropout: 0.1
38
+ pos_enc_at_attn: false
39
+ self_attention:
40
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
41
+ rope_theta: 10000.0
42
+ feat_sizes: [32, 32]
43
+ embedding_dim: 256
44
+ num_heads: 1
45
+ downsample_rate: 1
46
+ dropout: 0.1
47
+ d_model: 256
48
+ pos_enc_at_cross_attn_keys: true
49
+ pos_enc_at_cross_attn_queries: false
50
+ cross_attention:
51
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
52
+ rope_theta: 10000.0
53
+ feat_sizes: [32, 32]
54
+ rope_k_repeat: True
55
+ embedding_dim: 256
56
+ num_heads: 1
57
+ downsample_rate: 1
58
+ dropout: 0.1
59
+ kv_in_dim: 64
60
+ num_layers: 4
61
+
62
+ memory_encoder:
63
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
64
+ out_dim: 64
65
+ position_encoding:
66
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
67
+ num_pos_feats: 64
68
+ normalize: true
69
+ scale: null
70
+ temperature: 10000
71
+ mask_downsampler:
72
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
73
+ kernel_size: 3
74
+ stride: 2
75
+ padding: 1
76
+ fuser:
77
+ _target_: sam2.modeling.memory_encoder.Fuser
78
+ layer:
79
+ _target_: sam2.modeling.memory_encoder.CXBlock
80
+ dim: 256
81
+ kernel_size: 7
82
+ padding: 3
83
+ layer_scale_init_value: 1e-6
84
+ use_dwconv: True # depth-wise convs
85
+ num_layers: 2
86
+
87
+ num_maskmem: 7
88
+ image_size: 1024
89
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
90
+ sigmoid_scale_for_mem_enc: 20.0
91
+ sigmoid_bias_for_mem_enc: -10.0
92
+ use_mask_input_as_output_without_sam: true
93
+ # Memory
94
+ directly_add_no_mem_embed: true
95
+ # use high-resolution feature map in the SAM mask decoder
96
+ use_high_res_features_in_sam: true
97
+ # output 3 masks on the first click on initial conditioning frames
98
+ multimask_output_in_sam: true
99
+ # SAM heads
100
+ iou_prediction_use_sigmoid: True
101
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
102
+ use_obj_ptrs_in_encoder: true
103
+ add_tpos_enc_to_obj_ptrs: false
104
+ only_obj_ptrs_in_the_past_for_eval: true
105
+ # object occlusion prediction
106
+ pred_obj_scores: true
107
+ pred_obj_scores_mlp: true
108
+ fixed_no_obj_ptr: true
109
+ # multimask tracking settings
110
+ multimask_output_for_tracking: true
111
+ use_multimask_token_for_obj_ptr: true
112
+ multimask_min_pt_num: 0
113
+ multimask_max_pt_num: 1
114
+ use_mlp_for_obj_ptr_proj: true
115
+ # Compilation flag
116
+ compile_image_encoder: False
sam2/configs/sam2/sam2_hiera_t.yaml ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 96
12
+ num_heads: 1
13
+ stages: [1, 2, 7, 2]
14
+ global_att_blocks: [5, 7, 9]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ neck:
17
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
18
+ position_encoding:
19
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
20
+ num_pos_feats: 256
21
+ normalize: true
22
+ scale: null
23
+ temperature: 10000
24
+ d_model: 256
25
+ backbone_channel_list: [768, 384, 192, 96]
26
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
27
+ fpn_interp_model: nearest
28
+
29
+ memory_attention:
30
+ _target_: sam2.modeling.memory_attention.MemoryAttention
31
+ d_model: 256
32
+ pos_enc_at_input: true
33
+ layer:
34
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
35
+ activation: relu
36
+ dim_feedforward: 2048
37
+ dropout: 0.1
38
+ pos_enc_at_attn: false
39
+ self_attention:
40
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
41
+ rope_theta: 10000.0
42
+ feat_sizes: [32, 32]
43
+ embedding_dim: 256
44
+ num_heads: 1
45
+ downsample_rate: 1
46
+ dropout: 0.1
47
+ d_model: 256
48
+ pos_enc_at_cross_attn_keys: true
49
+ pos_enc_at_cross_attn_queries: false
50
+ cross_attention:
51
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
52
+ rope_theta: 10000.0
53
+ feat_sizes: [32, 32]
54
+ rope_k_repeat: True
55
+ embedding_dim: 256
56
+ num_heads: 1
57
+ downsample_rate: 1
58
+ dropout: 0.1
59
+ kv_in_dim: 64
60
+ num_layers: 4
61
+
62
+ memory_encoder:
63
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
64
+ out_dim: 64
65
+ position_encoding:
66
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
67
+ num_pos_feats: 64
68
+ normalize: true
69
+ scale: null
70
+ temperature: 10000
71
+ mask_downsampler:
72
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
73
+ kernel_size: 3
74
+ stride: 2
75
+ padding: 1
76
+ fuser:
77
+ _target_: sam2.modeling.memory_encoder.Fuser
78
+ layer:
79
+ _target_: sam2.modeling.memory_encoder.CXBlock
80
+ dim: 256
81
+ kernel_size: 7
82
+ padding: 3
83
+ layer_scale_init_value: 1e-6
84
+ use_dwconv: True # depth-wise convs
85
+ num_layers: 2
86
+
87
+ num_maskmem: 7
88
+ image_size: 1024
89
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
90
+ # SAM decoder
91
+ sigmoid_scale_for_mem_enc: 20.0
92
+ sigmoid_bias_for_mem_enc: -10.0
93
+ use_mask_input_as_output_without_sam: true
94
+ # Memory
95
+ directly_add_no_mem_embed: true
96
+ # use high-resolution feature map in the SAM mask decoder
97
+ use_high_res_features_in_sam: true
98
+ # output 3 masks on the first click on initial conditioning frames
99
+ multimask_output_in_sam: true
100
+ # SAM heads
101
+ iou_prediction_use_sigmoid: True
102
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
103
+ use_obj_ptrs_in_encoder: true
104
+ add_tpos_enc_to_obj_ptrs: false
105
+ only_obj_ptrs_in_the_past_for_eval: true
106
+ # object occlusion prediction
107
+ pred_obj_scores: true
108
+ pred_obj_scores_mlp: true
109
+ fixed_no_obj_ptr: true
110
+ # multimask tracking settings
111
+ multimask_output_for_tracking: true
112
+ use_multimask_token_for_obj_ptr: true
113
+ multimask_min_pt_num: 0
114
+ multimask_max_pt_num: 1
115
+ use_mlp_for_obj_ptr_proj: true
116
+ # Compilation flag
117
+ # HieraT does not currently support compilation, should always be set to False
118
+ compile_image_encoder: False
sam2/csrc/connected_components.cu ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ // adapted from https://github.com/zsef123/Connected_components_PyTorch
8
+ // with license found in the LICENSE_cctorch file in the root directory.
9
+ #include <ATen/cuda/CUDAContext.h>
10
+ #include <cuda.h>
11
+ #include <cuda_runtime.h>
12
+ #include <torch/extension.h>
13
+ #include <torch/script.h>
14
+ #include <vector>
15
+
16
+ // 2d
17
+ #define BLOCK_ROWS 16
18
+ #define BLOCK_COLS 16
19
+
20
+ namespace cc2d {
21
+
22
+ template <typename T>
23
+ __device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) {
24
+ return (bitmap >> pos) & 1;
25
+ }
26
+
27
+ __device__ int32_t find(const int32_t* s_buf, int32_t n) {
28
+ while (s_buf[n] != n)
29
+ n = s_buf[n];
30
+ return n;
31
+ }
32
+
33
+ __device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) {
34
+ const int32_t id = n;
35
+ while (s_buf[n] != n) {
36
+ n = s_buf[n];
37
+ s_buf[id] = n;
38
+ }
39
+ return n;
40
+ }
41
+
42
+ __device__ void union_(int32_t* s_buf, int32_t a, int32_t b) {
43
+ bool done;
44
+ do {
45
+ a = find(s_buf, a);
46
+ b = find(s_buf, b);
47
+
48
+ if (a < b) {
49
+ int32_t old = atomicMin(s_buf + b, a);
50
+ done = (old == b);
51
+ b = old;
52
+ } else if (b < a) {
53
+ int32_t old = atomicMin(s_buf + a, b);
54
+ done = (old == a);
55
+ a = old;
56
+ } else
57
+ done = true;
58
+
59
+ } while (!done);
60
+ }
61
+
62
+ __global__ void
63
+ init_labeling(int32_t* label, const uint32_t W, const uint32_t H) {
64
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
65
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
66
+ const uint32_t idx = row * W + col;
67
+
68
+ if (row < H && col < W)
69
+ label[idx] = idx;
70
+ }
71
+
72
+ __global__ void
73
+ merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) {
74
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
75
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
76
+ const uint32_t idx = row * W + col;
77
+
78
+ if (row >= H || col >= W)
79
+ return;
80
+
81
+ uint32_t P = 0;
82
+
83
+ if (img[idx])
84
+ P |= 0x777;
85
+ if (row + 1 < H && img[idx + W])
86
+ P |= 0x777 << 4;
87
+ if (col + 1 < W && img[idx + 1])
88
+ P |= 0x777 << 1;
89
+
90
+ if (col == 0)
91
+ P &= 0xEEEE;
92
+ if (col + 1 >= W)
93
+ P &= 0x3333;
94
+ else if (col + 2 >= W)
95
+ P &= 0x7777;
96
+
97
+ if (row == 0)
98
+ P &= 0xFFF0;
99
+ if (row + 1 >= H)
100
+ P &= 0xFF;
101
+
102
+ if (P > 0) {
103
+ // If need check about top-left pixel(if flag the first bit) and hit the
104
+ // top-left pixel
105
+ if (hasBit(P, 0) && img[idx - W - 1]) {
106
+ union_(label, idx, idx - 2 * W - 2); // top left block
107
+ }
108
+
109
+ if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1]))
110
+ union_(label, idx, idx - 2 * W); // top bottom block
111
+
112
+ if (hasBit(P, 3) && img[idx + 2 - W])
113
+ union_(label, idx, idx - 2 * W + 2); // top right block
114
+
115
+ if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1]))
116
+ union_(label, idx, idx - 2); // just left block
117
+ }
118
+ }
119
+
120
+ __global__ void compression(int32_t* label, const int32_t W, const int32_t H) {
121
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
122
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
123
+ const uint32_t idx = row * W + col;
124
+
125
+ if (row < H && col < W)
126
+ find_n_compress(label, idx);
127
+ }
128
+
129
+ __global__ void final_labeling(
130
+ const uint8_t* img,
131
+ int32_t* label,
132
+ const int32_t W,
133
+ const int32_t H) {
134
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
135
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
136
+ const uint32_t idx = row * W + col;
137
+
138
+ if (row >= H || col >= W)
139
+ return;
140
+
141
+ int32_t y = label[idx] + 1;
142
+
143
+ if (img[idx])
144
+ label[idx] = y;
145
+ else
146
+ label[idx] = 0;
147
+
148
+ if (col + 1 < W) {
149
+ if (img[idx + 1])
150
+ label[idx + 1] = y;
151
+ else
152
+ label[idx + 1] = 0;
153
+
154
+ if (row + 1 < H) {
155
+ if (img[idx + W + 1])
156
+ label[idx + W + 1] = y;
157
+ else
158
+ label[idx + W + 1] = 0;
159
+ }
160
+ }
161
+
162
+ if (row + 1 < H) {
163
+ if (img[idx + W])
164
+ label[idx + W] = y;
165
+ else
166
+ label[idx + W] = 0;
167
+ }
168
+ }
169
+
170
+ __global__ void init_counting(
171
+ const int32_t* label,
172
+ int32_t* count_init,
173
+ const int32_t W,
174
+ const int32_t H) {
175
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
176
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
177
+ const uint32_t idx = row * W + col;
178
+
179
+ if (row >= H || col >= W)
180
+ return;
181
+
182
+ int32_t y = label[idx];
183
+ if (y > 0) {
184
+ int32_t count_idx = y - 1;
185
+ atomicAdd(count_init + count_idx, 1);
186
+ }
187
+ }
188
+
189
+ __global__ void final_counting(
190
+ const int32_t* label,
191
+ const int32_t* count_init,
192
+ int32_t* count_final,
193
+ const int32_t W,
194
+ const int32_t H) {
195
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
196
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
197
+ const uint32_t idx = row * W + col;
198
+
199
+ if (row >= H || col >= W)
200
+ return;
201
+
202
+ int32_t y = label[idx];
203
+ if (y > 0) {
204
+ int32_t count_idx = y - 1;
205
+ count_final[idx] = count_init[count_idx];
206
+ } else {
207
+ count_final[idx] = 0;
208
+ }
209
+ }
210
+
211
+ } // namespace cc2d
212
+
213
+ std::vector<torch::Tensor> get_connected_componnets(
214
+ const torch::Tensor& inputs) {
215
+ AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor");
216
+ AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape");
217
+ AT_ASSERTM(
218
+ inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type");
219
+
220
+ const uint32_t N = inputs.size(0);
221
+ const uint32_t C = inputs.size(1);
222
+ const uint32_t H = inputs.size(2);
223
+ const uint32_t W = inputs.size(3);
224
+
225
+ AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape");
226
+ AT_ASSERTM((H % 2) == 0, "height must be an even number");
227
+ AT_ASSERTM((W % 2) == 0, "width must be an even number");
228
+
229
+ // label must be uint32_t
230
+ auto label_options =
231
+ torch::TensorOptions().dtype(torch::kInt32).device(inputs.device());
232
+ torch::Tensor labels = torch::zeros({N, C, H, W}, label_options);
233
+ torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options);
234
+ torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options);
235
+
236
+ dim3 grid = dim3(
237
+ ((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS,
238
+ ((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS);
239
+ dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS);
240
+ dim3 grid_count =
241
+ dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS);
242
+ dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS);
243
+ cudaStream_t stream = at::cuda::getCurrentCUDAStream();
244
+
245
+ for (int n = 0; n < N; n++) {
246
+ uint32_t offset = n * H * W;
247
+
248
+ cc2d::init_labeling<<<grid, block, 0, stream>>>(
249
+ labels.data_ptr<int32_t>() + offset, W, H);
250
+ cc2d::merge<<<grid, block, 0, stream>>>(
251
+ inputs.data_ptr<uint8_t>() + offset,
252
+ labels.data_ptr<int32_t>() + offset,
253
+ W,
254
+ H);
255
+ cc2d::compression<<<grid, block, 0, stream>>>(
256
+ labels.data_ptr<int32_t>() + offset, W, H);
257
+ cc2d::final_labeling<<<grid, block, 0, stream>>>(
258
+ inputs.data_ptr<uint8_t>() + offset,
259
+ labels.data_ptr<int32_t>() + offset,
260
+ W,
261
+ H);
262
+
263
+ // get the counting of each pixel
264
+ cc2d::init_counting<<<grid_count, block_count, 0, stream>>>(
265
+ labels.data_ptr<int32_t>() + offset,
266
+ counts_init.data_ptr<int32_t>() + offset,
267
+ W,
268
+ H);
269
+ cc2d::final_counting<<<grid_count, block_count, 0, stream>>>(
270
+ labels.data_ptr<int32_t>() + offset,
271
+ counts_init.data_ptr<int32_t>() + offset,
272
+ counts_final.data_ptr<int32_t>() + offset,
273
+ W,
274
+ H);
275
+ }
276
+
277
+ // returned values are [labels, counts]
278
+ std::vector<torch::Tensor> outputs;
279
+ outputs.push_back(labels);
280
+ outputs.push_back(counts_final);
281
+ return outputs;
282
+ }
283
+
284
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
285
+ m.def(
286
+ "get_connected_componnets",
287
+ &get_connected_componnets,
288
+ "get_connected_componnets");
289
+ }
sam2/modeling/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
sam2/modeling/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (227 Bytes). View file
 
sam2/modeling/__pycache__/memory_attention.cpython-311.pyc ADDED
Binary file (7.54 kB). View file
 
sam2/modeling/__pycache__/memory_encoder.cpython-311.pyc ADDED
Binary file (8.83 kB). View file
 
sam2/modeling/__pycache__/position_encoding.cpython-311.pyc ADDED
Binary file (15.7 kB). View file
 
sam2/modeling/__pycache__/sam2_base.cpython-311.pyc ADDED
Binary file (33 kB). View file
 
sam2/modeling/__pycache__/sam2_utils.cpython-311.pyc ADDED
Binary file (19.1 kB). View file
 
sam2/modeling/backbones/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
sam2/modeling/backbones/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (237 Bytes). View file
 
sam2/modeling/backbones/__pycache__/hieradet.cpython-311.pyc ADDED
Binary file (15.3 kB). View file
 
sam2/modeling/backbones/__pycache__/image_encoder.cpython-311.pyc ADDED
Binary file (5.94 kB). View file
 
sam2/modeling/backbones/__pycache__/utils.cpython-311.pyc ADDED
Binary file (4.79 kB). View file
 
sam2/modeling/backbones/hieradet.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import logging
8
+ from functools import partial
9
+ from typing import List, Tuple, Union
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+ from iopath.common.file_io import g_pathmgr
15
+
16
+ from sam2.modeling.backbones.utils import (
17
+ PatchEmbed,
18
+ window_partition,
19
+ window_unpartition,
20
+ )
21
+
22
+ from sam2.modeling.sam2_utils import DropPath, MLP
23
+
24
+
25
+ def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
26
+ if pool is None:
27
+ return x
28
+ # (B, H, W, C) -> (B, C, H, W)
29
+ x = x.permute(0, 3, 1, 2)
30
+ x = pool(x)
31
+ # (B, C, H', W') -> (B, H', W', C)
32
+ x = x.permute(0, 2, 3, 1)
33
+ if norm:
34
+ x = norm(x)
35
+
36
+ return x
37
+
38
+
39
+ class MultiScaleAttention(nn.Module):
40
+ def __init__(
41
+ self,
42
+ dim: int,
43
+ dim_out: int,
44
+ num_heads: int,
45
+ q_pool: nn.Module = None,
46
+ ):
47
+ super().__init__()
48
+
49
+ self.dim = dim
50
+ self.dim_out = dim_out
51
+ self.num_heads = num_heads
52
+ self.q_pool = q_pool
53
+ self.qkv = nn.Linear(dim, dim_out * 3)
54
+ self.proj = nn.Linear(dim_out, dim_out)
55
+
56
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
57
+ B, H, W, _ = x.shape
58
+ # qkv with shape (B, H * W, 3, nHead, C)
59
+ qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
60
+ # q, k, v with shape (B, H * W, nheads, C)
61
+ q, k, v = torch.unbind(qkv, 2)
62
+
63
+ # Q pooling (for downsample at stage changes)
64
+ if self.q_pool:
65
+ q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
66
+ H, W = q.shape[1:3] # downsampled shape
67
+ q = q.reshape(B, H * W, self.num_heads, -1)
68
+
69
+ # Torch's SDPA expects [B, nheads, H*W, C] so we transpose
70
+ x = F.scaled_dot_product_attention(
71
+ q.transpose(1, 2),
72
+ k.transpose(1, 2),
73
+ v.transpose(1, 2),
74
+ )
75
+ # Transpose back
76
+ x = x.transpose(1, 2)
77
+ x = x.reshape(B, H, W, -1)
78
+
79
+ x = self.proj(x)
80
+
81
+ return x
82
+
83
+
84
+ class MultiScaleBlock(nn.Module):
85
+ def __init__(
86
+ self,
87
+ dim: int,
88
+ dim_out: int,
89
+ num_heads: int,
90
+ mlp_ratio: float = 4.0,
91
+ drop_path: float = 0.0,
92
+ norm_layer: Union[nn.Module, str] = "LayerNorm",
93
+ q_stride: Tuple[int, int] = None,
94
+ act_layer: nn.Module = nn.GELU,
95
+ window_size: int = 0,
96
+ ):
97
+ super().__init__()
98
+
99
+ if isinstance(norm_layer, str):
100
+ norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)
101
+
102
+ self.dim = dim
103
+ self.dim_out = dim_out
104
+ self.norm1 = norm_layer(dim)
105
+
106
+ self.window_size = window_size
107
+
108
+ self.pool, self.q_stride = None, q_stride
109
+ if self.q_stride:
110
+ self.pool = nn.MaxPool2d(
111
+ kernel_size=q_stride, stride=q_stride, ceil_mode=False
112
+ )
113
+
114
+ self.attn = MultiScaleAttention(
115
+ dim,
116
+ dim_out,
117
+ num_heads=num_heads,
118
+ q_pool=self.pool,
119
+ )
120
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
121
+
122
+ self.norm2 = norm_layer(dim_out)
123
+ self.mlp = MLP(
124
+ dim_out,
125
+ int(dim_out * mlp_ratio),
126
+ dim_out,
127
+ num_layers=2,
128
+ activation=act_layer,
129
+ )
130
+
131
+ if dim != dim_out:
132
+ self.proj = nn.Linear(dim, dim_out)
133
+
134
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
135
+ shortcut = x # B, H, W, C
136
+ x = self.norm1(x)
137
+
138
+ # Skip connection
139
+ if self.dim != self.dim_out:
140
+ shortcut = do_pool(self.proj(x), self.pool)
141
+
142
+ # Window partition
143
+ window_size = self.window_size
144
+ if window_size > 0:
145
+ H, W = x.shape[1], x.shape[2]
146
+ x, pad_hw = window_partition(x, window_size)
147
+
148
+ # Window Attention + Q Pooling (if stage change)
149
+ x = self.attn(x)
150
+ if self.q_stride:
151
+ # Shapes have changed due to Q pooling
152
+ window_size = self.window_size // self.q_stride[0]
153
+ H, W = shortcut.shape[1:3]
154
+
155
+ pad_h = (window_size - H % window_size) % window_size
156
+ pad_w = (window_size - W % window_size) % window_size
157
+ pad_hw = (H + pad_h, W + pad_w)
158
+
159
+ # Reverse window partition
160
+ if self.window_size > 0:
161
+ x = window_unpartition(x, window_size, pad_hw, (H, W))
162
+
163
+ x = shortcut + self.drop_path(x)
164
+ # MLP
165
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
166
+ return x
167
+
168
+
169
+ class Hiera(nn.Module):
170
+ """
171
+ Reference: https://arxiv.org/abs/2306.00989
172
+ """
173
+
174
+ def __init__(
175
+ self,
176
+ embed_dim: int = 96, # initial embed dim
177
+ num_heads: int = 1, # initial number of heads
178
+ drop_path_rate: float = 0.0, # stochastic depth
179
+ q_pool: int = 3, # number of q_pool stages
180
+ q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
181
+ stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
182
+ dim_mul: float = 2.0, # dim_mul factor at stage shift
183
+ head_mul: float = 2.0, # head_mul factor at stage shift
184
+ window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
185
+ # window size per stage, when not using global att.
186
+ window_spec: Tuple[int, ...] = (
187
+ 8,
188
+ 4,
189
+ 14,
190
+ 7,
191
+ ),
192
+ # global attn in these blocks
193
+ global_att_blocks: Tuple[int, ...] = (
194
+ 12,
195
+ 16,
196
+ 20,
197
+ ),
198
+ weights_path=None,
199
+ return_interm_layers=True, # return feats from every stage
200
+ ):
201
+ super().__init__()
202
+
203
+ assert len(stages) == len(window_spec)
204
+ self.window_spec = window_spec
205
+
206
+ depth = sum(stages)
207
+ self.q_stride = q_stride
208
+ self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
209
+ assert 0 <= q_pool <= len(self.stage_ends[:-1])
210
+ self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
211
+ self.return_interm_layers = return_interm_layers
212
+
213
+ self.patch_embed = PatchEmbed(
214
+ embed_dim=embed_dim,
215
+ )
216
+ # Which blocks have global att?
217
+ self.global_att_blocks = global_att_blocks
218
+
219
+ # Windowed positional embedding (https://arxiv.org/abs/2311.05613)
220
+ self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
221
+ self.pos_embed = nn.Parameter(
222
+ torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)
223
+ )
224
+ self.pos_embed_window = nn.Parameter(
225
+ torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])
226
+ )
227
+
228
+ dpr = [
229
+ x.item() for x in torch.linspace(0, drop_path_rate, depth)
230
+ ] # stochastic depth decay rule
231
+
232
+ cur_stage = 1
233
+ self.blocks = nn.ModuleList()
234
+
235
+ for i in range(depth):
236
+ dim_out = embed_dim
237
+ # lags by a block, so first block of
238
+ # next stage uses an initial window size
239
+ # of previous stage and final window size of current stage
240
+ window_size = self.window_spec[cur_stage - 1]
241
+
242
+ if self.global_att_blocks is not None:
243
+ window_size = 0 if i in self.global_att_blocks else window_size
244
+
245
+ if i - 1 in self.stage_ends:
246
+ dim_out = int(embed_dim * dim_mul)
247
+ num_heads = int(num_heads * head_mul)
248
+ cur_stage += 1
249
+
250
+ block = MultiScaleBlock(
251
+ dim=embed_dim,
252
+ dim_out=dim_out,
253
+ num_heads=num_heads,
254
+ drop_path=dpr[i],
255
+ q_stride=self.q_stride if i in self.q_pool_blocks else None,
256
+ window_size=window_size,
257
+ )
258
+
259
+ embed_dim = dim_out
260
+ self.blocks.append(block)
261
+
262
+ self.channel_list = (
263
+ [self.blocks[i].dim_out for i in self.stage_ends[::-1]]
264
+ if return_interm_layers
265
+ else [self.blocks[-1].dim_out]
266
+ )
267
+
268
+ if weights_path is not None:
269
+ with g_pathmgr.open(weights_path, "rb") as f:
270
+ chkpt = torch.load(f, map_location="cpu")
271
+ logging.info("loading Hiera", self.load_state_dict(chkpt, strict=False))
272
+
273
+ def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
274
+ h, w = hw
275
+ window_embed = self.pos_embed_window
276
+ pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
277
+ pos_embed = pos_embed + window_embed.tile(
278
+ [x // y for x, y in zip(pos_embed.shape, window_embed.shape)]
279
+ )
280
+ pos_embed = pos_embed.permute(0, 2, 3, 1)
281
+ return pos_embed
282
+
283
+ def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
284
+ x = self.patch_embed(x)
285
+ # x: (B, H, W, C)
286
+
287
+ # Add pos embed
288
+ x = x + self._get_pos_embed(x.shape[1:3])
289
+
290
+ outputs = []
291
+ for i, blk in enumerate(self.blocks):
292
+ x = blk(x)
293
+ if (i == self.stage_ends[-1]) or (
294
+ i in self.stage_ends and self.return_interm_layers
295
+ ):
296
+ feats = x.permute(0, 3, 1, 2)
297
+ outputs.append(feats)
298
+
299
+ return outputs
300
+
301
+ def get_layer_id(self, layer_name):
302
+ # https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L33
303
+ num_layers = self.get_num_layers()
304
+
305
+ if layer_name.find("rel_pos") != -1:
306
+ return num_layers + 1
307
+ elif layer_name.find("pos_embed") != -1:
308
+ return 0
309
+ elif layer_name.find("patch_embed") != -1:
310
+ return 0
311
+ elif layer_name.find("blocks") != -1:
312
+ return int(layer_name.split("blocks")[1].split(".")[1]) + 1
313
+ else:
314
+ return num_layers + 1
315
+
316
+ def get_num_layers(self) -> int:
317
+ return len(self.blocks)
sam2/modeling/backbones/image_encoder.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import List, Optional
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+
13
+
14
+ class ImageEncoder(nn.Module):
15
+ def __init__(
16
+ self,
17
+ trunk: nn.Module,
18
+ neck: nn.Module,
19
+ scalp: int = 0,
20
+ ):
21
+ super().__init__()
22
+ self.trunk = trunk
23
+ self.neck = neck
24
+ self.scalp = scalp
25
+ assert (
26
+ self.trunk.channel_list == self.neck.backbone_channel_list
27
+ ), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}"
28
+
29
+ def forward(self, sample: torch.Tensor):
30
+ # Forward through backbone
31
+ features, pos = self.neck(self.trunk(sample))
32
+ if self.scalp > 0:
33
+ # Discard the lowest resolution features
34
+ features, pos = features[: -self.scalp], pos[: -self.scalp]
35
+
36
+ src = features[-1]
37
+ output = {
38
+ "vision_features": src,
39
+ "vision_pos_enc": pos,
40
+ "backbone_fpn": features,
41
+ }
42
+ return output
43
+
44
+
45
+ class FpnNeck(nn.Module):
46
+ """
47
+ A modified variant of Feature Pyramid Network (FPN) neck
48
+ (we remove output conv and also do bicubic interpolation similar to ViT
49
+ pos embed interpolation)
50
+ """
51
+
52
+ def __init__(
53
+ self,
54
+ position_encoding: nn.Module,
55
+ d_model: int,
56
+ backbone_channel_list: List[int],
57
+ kernel_size: int = 1,
58
+ stride: int = 1,
59
+ padding: int = 0,
60
+ fpn_interp_model: str = "bilinear",
61
+ fuse_type: str = "sum",
62
+ fpn_top_down_levels: Optional[List[int]] = None,
63
+ ):
64
+ """Initialize the neck
65
+ :param trunk: the backbone
66
+ :param position_encoding: the positional encoding to use
67
+ :param d_model: the dimension of the model
68
+ :param neck_norm: the normalization to use
69
+ """
70
+ super().__init__()
71
+ self.position_encoding = position_encoding
72
+ self.convs = nn.ModuleList()
73
+ self.backbone_channel_list = backbone_channel_list
74
+ self.d_model = d_model
75
+ for dim in backbone_channel_list:
76
+ current = nn.Sequential()
77
+ current.add_module(
78
+ "conv",
79
+ nn.Conv2d(
80
+ in_channels=dim,
81
+ out_channels=d_model,
82
+ kernel_size=kernel_size,
83
+ stride=stride,
84
+ padding=padding,
85
+ ),
86
+ )
87
+
88
+ self.convs.append(current)
89
+ self.fpn_interp_model = fpn_interp_model
90
+ assert fuse_type in ["sum", "avg"]
91
+ self.fuse_type = fuse_type
92
+
93
+ # levels to have top-down features in its outputs
94
+ # e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
95
+ # have top-down propagation, while outputs of level 0 and level 1 have only
96
+ # lateral features from the same backbone level.
97
+ if fpn_top_down_levels is None:
98
+ # default is to have top-down features on all levels
99
+ fpn_top_down_levels = range(len(self.convs))
100
+ self.fpn_top_down_levels = list(fpn_top_down_levels)
101
+
102
+ def forward(self, xs: List[torch.Tensor]):
103
+
104
+ out = [None] * len(self.convs)
105
+ pos = [None] * len(self.convs)
106
+ assert len(xs) == len(self.convs)
107
+ # fpn forward pass
108
+ # see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
109
+ prev_features = None
110
+ # forward in top-down order (from low to high resolution)
111
+ n = len(self.convs) - 1
112
+ for i in range(n, -1, -1):
113
+ x = xs[i]
114
+ lateral_features = self.convs[n - i](x)
115
+ if i in self.fpn_top_down_levels and prev_features is not None:
116
+ top_down_features = F.interpolate(
117
+ prev_features.to(dtype=torch.float32),
118
+ scale_factor=2.0,
119
+ mode=self.fpn_interp_model,
120
+ align_corners=(
121
+ None if self.fpn_interp_model == "nearest" else False
122
+ ),
123
+ antialias=False,
124
+ )
125
+ prev_features = lateral_features + top_down_features
126
+ if self.fuse_type == "avg":
127
+ prev_features /= 2
128
+ else:
129
+ prev_features = lateral_features
130
+ x_out = prev_features
131
+ out[i] = x_out
132
+ pos[i] = self.position_encoding(x_out).to(x_out.dtype)
133
+
134
+ return out, pos
sam2/modeling/backbones/utils.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """Some utilities for backbones, in particular for windowing"""
8
+
9
+ from typing import Tuple
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+
15
+
16
+ def window_partition(x, window_size):
17
+ """
18
+ Partition into non-overlapping windows with padding if needed.
19
+ Args:
20
+ x (tensor): input tokens with [B, H, W, C].
21
+ window_size (int): window size.
22
+ Returns:
23
+ windows: windows after partition with [B * num_windows, window_size, window_size, C].
24
+ (Hp, Wp): padded height and width before partition
25
+ """
26
+ B, H, W, C = x.shape
27
+
28
+ pad_h = (window_size - H % window_size) % window_size
29
+ pad_w = (window_size - W % window_size) % window_size
30
+ if pad_h > 0 or pad_w > 0:
31
+ x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
32
+ Hp, Wp = H + pad_h, W + pad_w
33
+
34
+ x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
35
+ windows = (
36
+ x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
37
+ )
38
+ return windows, (Hp, Wp)
39
+
40
+
41
+ def window_unpartition(windows, window_size, pad_hw, hw):
42
+ """
43
+ Window unpartition into original sequences and removing padding.
44
+ Args:
45
+ x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
46
+ window_size (int): window size.
47
+ pad_hw (Tuple): padded height and width (Hp, Wp).
48
+ hw (Tuple): original height and width (H, W) before padding.
49
+ Returns:
50
+ x: unpartitioned sequences with [B, H, W, C].
51
+ """
52
+ Hp, Wp = pad_hw
53
+ H, W = hw
54
+ B = windows.shape[0] // (Hp * Wp // window_size // window_size)
55
+ x = windows.view(
56
+ B, Hp // window_size, Wp // window_size, window_size, window_size, -1
57
+ )
58
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
59
+
60
+ if Hp > H or Wp > W:
61
+ x = x[:, :H, :W, :].contiguous()
62
+ return x
63
+
64
+
65
+ class PatchEmbed(nn.Module):
66
+ """
67
+ Image to Patch Embedding.
68
+ """
69
+
70
+ def __init__(
71
+ self,
72
+ kernel_size: Tuple[int, ...] = (7, 7),
73
+ stride: Tuple[int, ...] = (4, 4),
74
+ padding: Tuple[int, ...] = (3, 3),
75
+ in_chans: int = 3,
76
+ embed_dim: int = 768,
77
+ ):
78
+ """
79
+ Args:
80
+ kernel_size (Tuple): kernel size of the projection layer.
81
+ stride (Tuple): stride of the projection layer.
82
+ padding (Tuple): padding size of the projection layer.
83
+ in_chans (int): Number of input image channels.
84
+ embed_dim (int): embed_dim (int): Patch embedding dimension.
85
+ """
86
+ super().__init__()
87
+ self.proj = nn.Conv2d(
88
+ in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
89
+ )
90
+
91
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
92
+ x = self.proj(x)
93
+ # B C H W -> B H W C
94
+ x = x.permute(0, 2, 3, 1)
95
+ return x
sam2/modeling/memory_attention.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import Optional
8
+
9
+ import torch
10
+ from torch import nn, Tensor
11
+
12
+ from sam2.modeling.sam.transformer import RoPEAttention
13
+
14
+ from sam2.modeling.sam2_utils import get_activation_fn, get_clones
15
+
16
+
17
+ class MemoryAttentionLayer(nn.Module):
18
+
19
+ def __init__(
20
+ self,
21
+ activation: str,
22
+ cross_attention: nn.Module,
23
+ d_model: int,
24
+ dim_feedforward: int,
25
+ dropout: float,
26
+ pos_enc_at_attn: bool,
27
+ pos_enc_at_cross_attn_keys: bool,
28
+ pos_enc_at_cross_attn_queries: bool,
29
+ self_attention: nn.Module,
30
+ ):
31
+ super().__init__()
32
+ self.d_model = d_model
33
+ self.dim_feedforward = dim_feedforward
34
+ self.dropout_value = dropout
35
+ self.self_attn = self_attention
36
+ self.cross_attn_image = cross_attention
37
+
38
+ # Implementation of Feedforward model
39
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
40
+ self.dropout = nn.Dropout(dropout)
41
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
42
+
43
+ self.norm1 = nn.LayerNorm(d_model)
44
+ self.norm2 = nn.LayerNorm(d_model)
45
+ self.norm3 = nn.LayerNorm(d_model)
46
+ self.dropout1 = nn.Dropout(dropout)
47
+ self.dropout2 = nn.Dropout(dropout)
48
+ self.dropout3 = nn.Dropout(dropout)
49
+
50
+ self.activation_str = activation
51
+ self.activation = get_activation_fn(activation)
52
+
53
+ # Where to add pos enc
54
+ self.pos_enc_at_attn = pos_enc_at_attn
55
+ self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
56
+ self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
57
+
58
+ def _forward_sa(self, tgt, query_pos):
59
+ # Self-Attention
60
+ tgt2 = self.norm1(tgt)
61
+ q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
62
+ tgt2 = self.self_attn(q, k, v=tgt2)
63
+ tgt = tgt + self.dropout1(tgt2)
64
+ return tgt
65
+
66
+ def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
67
+ kwds = {}
68
+ if num_k_exclude_rope > 0:
69
+ assert isinstance(self.cross_attn_image, RoPEAttention)
70
+ kwds = {"num_k_exclude_rope": num_k_exclude_rope}
71
+
72
+ # Cross-Attention
73
+ tgt2 = self.norm2(tgt)
74
+ tgt2 = self.cross_attn_image(
75
+ q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
76
+ k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
77
+ v=memory,
78
+ **kwds,
79
+ )
80
+ tgt = tgt + self.dropout2(tgt2)
81
+ return tgt
82
+
83
+ def forward(
84
+ self,
85
+ tgt,
86
+ memory,
87
+ pos: Optional[Tensor] = None,
88
+ query_pos: Optional[Tensor] = None,
89
+ num_k_exclude_rope: int = 0,
90
+ ) -> torch.Tensor:
91
+
92
+ # Self-Attn, Cross-Attn
93
+ tgt = self._forward_sa(tgt, query_pos)
94
+ tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
95
+ # MLP
96
+ tgt2 = self.norm3(tgt)
97
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
98
+ tgt = tgt + self.dropout3(tgt2)
99
+ return tgt
100
+
101
+
102
+ class MemoryAttention(nn.Module):
103
+ def __init__(
104
+ self,
105
+ d_model: int,
106
+ pos_enc_at_input: bool,
107
+ layer: nn.Module,
108
+ num_layers: int,
109
+ batch_first: bool = True, # Do layers expect batch first input?
110
+ ):
111
+ super().__init__()
112
+ self.d_model = d_model
113
+ self.layers = get_clones(layer, num_layers)
114
+ self.num_layers = num_layers
115
+ self.norm = nn.LayerNorm(d_model)
116
+ self.pos_enc_at_input = pos_enc_at_input
117
+ self.batch_first = batch_first
118
+
119
+ def forward(
120
+ self,
121
+ curr: torch.Tensor, # self-attention inputs
122
+ memory: torch.Tensor, # cross-attention inputs
123
+ curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs
124
+ memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs
125
+ num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
126
+ ):
127
+ if isinstance(curr, list):
128
+ assert isinstance(curr_pos, list)
129
+ assert len(curr) == len(curr_pos) == 1
130
+ curr, curr_pos = (
131
+ curr[0],
132
+ curr_pos[0],
133
+ )
134
+
135
+ assert (
136
+ curr.shape[1] == memory.shape[1]
137
+ ), "Batch size must be the same for curr and memory"
138
+
139
+ output = curr
140
+ if self.pos_enc_at_input and curr_pos is not None:
141
+ output = output + 0.1 * curr_pos
142
+
143
+ if self.batch_first:
144
+ # Convert to batch first
145
+ output = output.transpose(0, 1)
146
+ curr_pos = curr_pos.transpose(0, 1)
147
+ memory = memory.transpose(0, 1)
148
+ memory_pos = memory_pos.transpose(0, 1)
149
+
150
+ for layer in self.layers:
151
+ kwds = {}
152
+ if isinstance(layer.cross_attn_image, RoPEAttention):
153
+ kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}
154
+
155
+ output = layer(
156
+ tgt=output,
157
+ memory=memory,
158
+ pos=memory_pos,
159
+ query_pos=curr_pos,
160
+ **kwds,
161
+ )
162
+ normed_output = self.norm(output)
163
+
164
+ if self.batch_first:
165
+ # Convert back to seq first
166
+ normed_output = normed_output.transpose(0, 1)
167
+ curr_pos = curr_pos.transpose(0, 1)
168
+
169
+ return normed_output
sam2/modeling/memory_encoder.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import math
8
+ from typing import Tuple
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+
14
+ from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d
15
+
16
+
17
+ class MaskDownSampler(nn.Module):
18
+ """
19
+ Progressively downsample a mask by total_stride, each time by stride.
20
+ Note that LayerNorm is applied per *token*, like in ViT.
21
+
22
+ With each downsample (by a factor stride**2), channel capacity increases by the same factor.
23
+ In the end, we linearly project to embed_dim channels.
24
+ """
25
+
26
+ def __init__(
27
+ self,
28
+ embed_dim=256,
29
+ kernel_size=4,
30
+ stride=4,
31
+ padding=0,
32
+ total_stride=16,
33
+ activation=nn.GELU,
34
+ ):
35
+ super().__init__()
36
+ num_layers = int(math.log2(total_stride) // math.log2(stride))
37
+ assert stride**num_layers == total_stride
38
+ self.encoder = nn.Sequential()
39
+ mask_in_chans, mask_out_chans = 1, 1
40
+ for _ in range(num_layers):
41
+ mask_out_chans = mask_in_chans * (stride**2)
42
+ self.encoder.append(
43
+ nn.Conv2d(
44
+ mask_in_chans,
45
+ mask_out_chans,
46
+ kernel_size=kernel_size,
47
+ stride=stride,
48
+ padding=padding,
49
+ )
50
+ )
51
+ self.encoder.append(LayerNorm2d(mask_out_chans))
52
+ self.encoder.append(activation())
53
+ mask_in_chans = mask_out_chans
54
+
55
+ self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))
56
+
57
+ def forward(self, x):
58
+ return self.encoder(x)
59
+
60
+
61
+ # Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt)
62
+ class CXBlock(nn.Module):
63
+ r"""ConvNeXt Block. There are two equivalent implementations:
64
+ (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
65
+ (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
66
+ We use (2) as we find it slightly faster in PyTorch
67
+
68
+ Args:
69
+ dim (int): Number of input channels.
70
+ drop_path (float): Stochastic depth rate. Default: 0.0
71
+ layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
72
+ """
73
+
74
+ def __init__(
75
+ self,
76
+ dim,
77
+ kernel_size=7,
78
+ padding=3,
79
+ drop_path=0.0,
80
+ layer_scale_init_value=1e-6,
81
+ use_dwconv=True,
82
+ ):
83
+ super().__init__()
84
+ self.dwconv = nn.Conv2d(
85
+ dim,
86
+ dim,
87
+ kernel_size=kernel_size,
88
+ padding=padding,
89
+ groups=dim if use_dwconv else 1,
90
+ ) # depthwise conv
91
+ self.norm = LayerNorm2d(dim, eps=1e-6)
92
+ self.pwconv1 = nn.Linear(
93
+ dim, 4 * dim
94
+ ) # pointwise/1x1 convs, implemented with linear layers
95
+ self.act = nn.GELU()
96
+ self.pwconv2 = nn.Linear(4 * dim, dim)
97
+ self.gamma = (
98
+ nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
99
+ if layer_scale_init_value > 0
100
+ else None
101
+ )
102
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
103
+
104
+ def forward(self, x):
105
+ input = x
106
+ x = self.dwconv(x)
107
+ x = self.norm(x)
108
+ x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
109
+ x = self.pwconv1(x)
110
+ x = self.act(x)
111
+ x = self.pwconv2(x)
112
+ if self.gamma is not None:
113
+ x = self.gamma * x
114
+ x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
115
+
116
+ x = input + self.drop_path(x)
117
+ return x
118
+
119
+
120
+ class Fuser(nn.Module):
121
+ def __init__(self, layer, num_layers, dim=None, input_projection=False):
122
+ super().__init__()
123
+ self.proj = nn.Identity()
124
+ self.layers = get_clones(layer, num_layers)
125
+
126
+ if input_projection:
127
+ assert dim is not None
128
+ self.proj = nn.Conv2d(dim, dim, kernel_size=1)
129
+
130
+ def forward(self, x):
131
+ # normally x: (N, C, H, W)
132
+ x = self.proj(x)
133
+ for layer in self.layers:
134
+ x = layer(x)
135
+ return x
136
+
137
+
138
+ class MemoryEncoder(nn.Module):
139
+ def __init__(
140
+ self,
141
+ out_dim,
142
+ mask_downsampler,
143
+ fuser,
144
+ position_encoding,
145
+ in_dim=256, # in_dim of pix_feats
146
+ ):
147
+ super().__init__()
148
+
149
+ self.mask_downsampler = mask_downsampler
150
+
151
+ self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
152
+ self.fuser = fuser
153
+ self.position_encoding = position_encoding
154
+ self.out_proj = nn.Identity()
155
+ if out_dim != in_dim:
156
+ self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
157
+
158
+ def forward(
159
+ self,
160
+ pix_feat: torch.Tensor,
161
+ masks: torch.Tensor,
162
+ skip_mask_sigmoid: bool = False,
163
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
164
+ ## Process masks
165
+ # sigmoid, so that less domain shift from gt masks which are bool
166
+ if not skip_mask_sigmoid:
167
+ masks = F.sigmoid(masks)
168
+ masks = self.mask_downsampler(masks)
169
+
170
+ ## Fuse pix_feats and downsampled masks
171
+ # in case the visual features are on CPU, cast them to CUDA
172
+ pix_feat = pix_feat.to(masks.device)
173
+
174
+ x = self.pix_feat_proj(pix_feat)
175
+ x = x + masks
176
+ x = self.fuser(x)
177
+ x = self.out_proj(x)
178
+
179
+ pos = self.position_encoding(x).to(x.dtype)
180
+
181
+ return {"vision_features": x, "vision_pos_enc": [pos]}
sam2/modeling/position_encoding.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import math
8
+ from typing import Any, Optional, Tuple
9
+
10
+ import numpy as np
11
+
12
+ import torch
13
+ from torch import nn
14
+
15
+
16
+ class PositionEmbeddingSine(nn.Module):
17
+ """
18
+ This is a more standard version of the position embedding, very similar to the one
19
+ used by the Attention Is All You Need paper, generalized to work on images.
20
+ """
21
+
22
+ def __init__(
23
+ self,
24
+ num_pos_feats,
25
+ temperature: int = 10000,
26
+ normalize: bool = True,
27
+ scale: Optional[float] = None,
28
+ ):
29
+ super().__init__()
30
+ assert num_pos_feats % 2 == 0, "Expecting even model width"
31
+ self.num_pos_feats = num_pos_feats // 2
32
+ self.temperature = temperature
33
+ self.normalize = normalize
34
+ if scale is not None and normalize is False:
35
+ raise ValueError("normalize should be True if scale is passed")
36
+ if scale is None:
37
+ scale = 2 * math.pi
38
+ self.scale = scale
39
+
40
+ self.cache = {}
41
+
42
+ def _encode_xy(self, x, y):
43
+ # The positions are expected to be normalized
44
+ assert len(x) == len(y) and x.ndim == y.ndim == 1
45
+ x_embed = x * self.scale
46
+ y_embed = y * self.scale
47
+
48
+ dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
49
+ dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
50
+
51
+ pos_x = x_embed[:, None] / dim_t
52
+ pos_y = y_embed[:, None] / dim_t
53
+ pos_x = torch.stack(
54
+ (pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2
55
+ ).flatten(1)
56
+ pos_y = torch.stack(
57
+ (pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2
58
+ ).flatten(1)
59
+ return pos_x, pos_y
60
+
61
+ @torch.no_grad()
62
+ def encode_boxes(self, x, y, w, h):
63
+ pos_x, pos_y = self._encode_xy(x, y)
64
+ pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)
65
+ return pos
66
+
67
+ encode = encode_boxes # Backwards compatibility
68
+
69
+ @torch.no_grad()
70
+ def encode_points(self, x, y, labels):
71
+ (bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape
72
+ assert bx == by and nx == ny and bx == bl and nx == nl
73
+ pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten())
74
+ pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)
75
+ pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)
76
+ return pos
77
+
78
+ @torch.no_grad()
79
+ def forward(self, x: torch.Tensor):
80
+ cache_key = (x.shape[-2], x.shape[-1])
81
+ if cache_key in self.cache:
82
+ return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1)
83
+ y_embed = (
84
+ torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device)
85
+ .view(1, -1, 1)
86
+ .repeat(x.shape[0], 1, x.shape[-1])
87
+ )
88
+ x_embed = (
89
+ torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device)
90
+ .view(1, 1, -1)
91
+ .repeat(x.shape[0], x.shape[-2], 1)
92
+ )
93
+
94
+ if self.normalize:
95
+ eps = 1e-6
96
+ y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
97
+ x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
98
+
99
+ dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
100
+ dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
101
+
102
+ pos_x = x_embed[:, :, :, None] / dim_t
103
+ pos_y = y_embed[:, :, :, None] / dim_t
104
+ pos_x = torch.stack(
105
+ (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
106
+ ).flatten(3)
107
+ pos_y = torch.stack(
108
+ (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
109
+ ).flatten(3)
110
+ pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
111
+ self.cache[cache_key] = pos[0]
112
+ return pos
113
+
114
+
115
+ class PositionEmbeddingRandom(nn.Module):
116
+ """
117
+ Positional encoding using random spatial frequencies.
118
+ """
119
+
120
+ def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
121
+ super().__init__()
122
+ if scale is None or scale <= 0.0:
123
+ scale = 1.0
124
+ self.register_buffer(
125
+ "positional_encoding_gaussian_matrix",
126
+ scale * torch.randn((2, num_pos_feats)),
127
+ )
128
+
129
+ def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
130
+ """Positionally encode points that are normalized to [0,1]."""
131
+ # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
132
+ coords = 2 * coords - 1
133
+ coords = coords @ self.positional_encoding_gaussian_matrix
134
+ coords = 2 * np.pi * coords
135
+ # outputs d_1 x ... x d_n x C shape
136
+ return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
137
+
138
+ def forward(self, size: Tuple[int, int]) -> torch.Tensor:
139
+ """Generate positional encoding for a grid of the specified size."""
140
+ h, w = size
141
+ device: Any = self.positional_encoding_gaussian_matrix.device
142
+ grid = torch.ones((h, w), device=device, dtype=torch.float32)
143
+ y_embed = grid.cumsum(dim=0) - 0.5
144
+ x_embed = grid.cumsum(dim=1) - 0.5
145
+ y_embed = y_embed / h
146
+ x_embed = x_embed / w
147
+
148
+ pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
149
+ return pe.permute(2, 0, 1) # C x H x W
150
+
151
+ def forward_with_coords(
152
+ self, coords_input: torch.Tensor, image_size: Tuple[int, int]
153
+ ) -> torch.Tensor:
154
+ """Positionally encode points that are not normalized to [0,1]."""
155
+ coords = coords_input.clone()
156
+ coords[:, :, 0] = coords[:, :, 0] / image_size[1]
157
+ coords[:, :, 1] = coords[:, :, 1] / image_size[0]
158
+ return self._pe_encoding(coords.to(torch.float)) # B x N x C
159
+
160
+
161
+ # Rotary Positional Encoding, adapted from:
162
+ # 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py
163
+ # 2. https://github.com/naver-ai/rope-vit
164
+ # 3. https://github.com/lucidrains/rotary-embedding-torch
165
+
166
+
167
+ def init_t_xy(end_x: int, end_y: int):
168
+ t = torch.arange(end_x * end_y, dtype=torch.float32)
169
+ t_x = (t % end_x).float()
170
+ t_y = torch.div(t, end_x, rounding_mode="floor").float()
171
+ return t_x, t_y
172
+
173
+
174
+ def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0):
175
+ freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
176
+ freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
177
+
178
+ t_x, t_y = init_t_xy(end_x, end_y)
179
+ freqs_x = torch.outer(t_x, freqs_x)
180
+ freqs_y = torch.outer(t_y, freqs_y)
181
+ freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
182
+ freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
183
+ return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
184
+
185
+
186
+ def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
187
+ ndim = x.ndim
188
+ assert 0 <= 1 < ndim
189
+ assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
190
+ shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)]
191
+ return freqs_cis.view(*shape)
192
+
193
+
194
+ def apply_rotary_enc(
195
+ xq: torch.Tensor,
196
+ xk: torch.Tensor,
197
+ freqs_cis: torch.Tensor,
198
+ repeat_freqs_k: bool = False,
199
+ ):
200
+ xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
201
+ xk_ = (
202
+ torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
203
+ if xk.shape[-2] != 0
204
+ else None
205
+ )
206
+ freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
207
+ xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
208
+ if xk_ is None:
209
+ # no keys to rotate, due to dropout
210
+ return xq_out.type_as(xq).to(xq.device), xk
211
+ # repeat freqs along seq_len dim to match k seq_len
212
+ if repeat_freqs_k:
213
+ r = xk_.shape[-2] // xq_.shape[-2]
214
+ if freqs_cis.is_cuda:
215
+ freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1)
216
+ else:
217
+ # torch.repeat on complex numbers may not be supported on non-CUDA devices
218
+ # (freqs_cis has 4 dims and we repeat on dim 2) so we use expand + flatten
219
+ freqs_cis = freqs_cis.unsqueeze(2).expand(-1, -1, r, -1, -1).flatten(2, 3)
220
+ xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
221
+ return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)
sam2/modeling/sam/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
sam2/modeling/sam/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (231 Bytes). View file
 
sam2/modeling/sam/__pycache__/mask_decoder.cpython-311.pyc ADDED
Binary file (13.4 kB). View file
 
sam2/modeling/sam/__pycache__/prompt_encoder.cpython-311.pyc ADDED
Binary file (9.91 kB). View file
 
sam2/modeling/sam/__pycache__/transformer.cpython-311.pyc ADDED
Binary file (16.8 kB). View file
 
sam2/modeling/sam/mask_decoder.py ADDED
@@ -0,0 +1,295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import List, Optional, Tuple, Type
8
+
9
+ import torch
10
+ from torch import nn
11
+
12
+ from sam2.modeling.sam2_utils import LayerNorm2d, MLP
13
+
14
+
15
+ class MaskDecoder(nn.Module):
16
+ def __init__(
17
+ self,
18
+ *,
19
+ transformer_dim: int,
20
+ transformer: nn.Module,
21
+ num_multimask_outputs: int = 3,
22
+ activation: Type[nn.Module] = nn.GELU,
23
+ iou_head_depth: int = 3,
24
+ iou_head_hidden_dim: int = 256,
25
+ use_high_res_features: bool = False,
26
+ iou_prediction_use_sigmoid=False,
27
+ dynamic_multimask_via_stability=False,
28
+ dynamic_multimask_stability_delta=0.05,
29
+ dynamic_multimask_stability_thresh=0.98,
30
+ pred_obj_scores: bool = False,
31
+ pred_obj_scores_mlp: bool = False,
32
+ use_multimask_token_for_obj_ptr: bool = False,
33
+ ) -> None:
34
+ """
35
+ Predicts masks given an image and prompt embeddings, using a
36
+ transformer architecture.
37
+
38
+ Arguments:
39
+ transformer_dim (int): the channel dimension of the transformer
40
+ transformer (nn.Module): the transformer used to predict masks
41
+ num_multimask_outputs (int): the number of masks to predict
42
+ when disambiguating masks
43
+ activation (nn.Module): the type of activation to use when
44
+ upscaling masks
45
+ iou_head_depth (int): the depth of the MLP used to predict
46
+ mask quality
47
+ iou_head_hidden_dim (int): the hidden dimension of the MLP
48
+ used to predict mask quality
49
+ """
50
+ super().__init__()
51
+ self.transformer_dim = transformer_dim
52
+ self.transformer = transformer
53
+
54
+ self.num_multimask_outputs = num_multimask_outputs
55
+
56
+ self.iou_token = nn.Embedding(1, transformer_dim)
57
+ self.num_mask_tokens = num_multimask_outputs + 1
58
+ self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
59
+
60
+ self.pred_obj_scores = pred_obj_scores
61
+ if self.pred_obj_scores:
62
+ self.obj_score_token = nn.Embedding(1, transformer_dim)
63
+ self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
64
+
65
+ self.output_upscaling = nn.Sequential(
66
+ nn.ConvTranspose2d(
67
+ transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
68
+ ),
69
+ LayerNorm2d(transformer_dim // 4),
70
+ activation(),
71
+ nn.ConvTranspose2d(
72
+ transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
73
+ ),
74
+ activation(),
75
+ )
76
+ self.use_high_res_features = use_high_res_features
77
+ if use_high_res_features:
78
+ self.conv_s0 = nn.Conv2d(
79
+ transformer_dim, transformer_dim // 8, kernel_size=1, stride=1
80
+ )
81
+ self.conv_s1 = nn.Conv2d(
82
+ transformer_dim, transformer_dim // 4, kernel_size=1, stride=1
83
+ )
84
+
85
+ self.output_hypernetworks_mlps = nn.ModuleList(
86
+ [
87
+ MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
88
+ for i in range(self.num_mask_tokens)
89
+ ]
90
+ )
91
+
92
+ self.iou_prediction_head = MLP(
93
+ transformer_dim,
94
+ iou_head_hidden_dim,
95
+ self.num_mask_tokens,
96
+ iou_head_depth,
97
+ sigmoid_output=iou_prediction_use_sigmoid,
98
+ )
99
+ if self.pred_obj_scores:
100
+ self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
101
+ if pred_obj_scores_mlp:
102
+ self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
103
+
104
+ # When outputting a single mask, optionally we can dynamically fall back to the best
105
+ # multimask output token if the single mask output token gives low stability scores.
106
+ self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
107
+ self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
108
+ self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
109
+
110
+ def forward(
111
+ self,
112
+ image_embeddings: torch.Tensor,
113
+ image_pe: torch.Tensor,
114
+ sparse_prompt_embeddings: torch.Tensor,
115
+ dense_prompt_embeddings: torch.Tensor,
116
+ multimask_output: bool,
117
+ repeat_image: bool,
118
+ high_res_features: Optional[List[torch.Tensor]] = None,
119
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
120
+ """
121
+ Predict masks given image and prompt embeddings.
122
+
123
+ Arguments:
124
+ image_embeddings (torch.Tensor): the embeddings from the image encoder
125
+ image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
126
+ sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
127
+ dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
128
+ multimask_output (bool): Whether to return multiple masks or a single
129
+ mask.
130
+
131
+ Returns:
132
+ torch.Tensor: batched predicted masks
133
+ torch.Tensor: batched predictions of mask quality
134
+ torch.Tensor: batched SAM token for mask output
135
+ """
136
+ masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
137
+ image_embeddings=image_embeddings,
138
+ image_pe=image_pe,
139
+ sparse_prompt_embeddings=sparse_prompt_embeddings,
140
+ dense_prompt_embeddings=dense_prompt_embeddings,
141
+ repeat_image=repeat_image,
142
+ high_res_features=high_res_features,
143
+ )
144
+
145
+ # Select the correct mask or masks for output
146
+ if multimask_output:
147
+ masks = masks[:, 1:, :, :]
148
+ iou_pred = iou_pred[:, 1:]
149
+ elif self.dynamic_multimask_via_stability and not self.training:
150
+ masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
151
+ else:
152
+ masks = masks[:, 0:1, :, :]
153
+ iou_pred = iou_pred[:, 0:1]
154
+
155
+ if multimask_output and self.use_multimask_token_for_obj_ptr:
156
+ sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape
157
+ else:
158
+ # Take the mask output token. Here we *always* use the token for single mask output.
159
+ # At test time, even if we track after 1-click (and using multimask_output=True),
160
+ # we still take the single mask token here. The rationale is that we always track
161
+ # after multiple clicks during training, so the past tokens seen during training
162
+ # are always the single mask token (and we'll let it be the object-memory token).
163
+ sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape
164
+
165
+ # Prepare output
166
+ return masks, iou_pred, sam_tokens_out, object_score_logits
167
+
168
+ def predict_masks(
169
+ self,
170
+ image_embeddings: torch.Tensor,
171
+ image_pe: torch.Tensor,
172
+ sparse_prompt_embeddings: torch.Tensor,
173
+ dense_prompt_embeddings: torch.Tensor,
174
+ repeat_image: bool,
175
+ high_res_features: Optional[List[torch.Tensor]] = None,
176
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
177
+ """Predicts masks. See 'forward' for more details."""
178
+ # Concatenate output tokens
179
+ s = 0
180
+ if self.pred_obj_scores:
181
+ output_tokens = torch.cat(
182
+ [
183
+ self.obj_score_token.weight,
184
+ self.iou_token.weight,
185
+ self.mask_tokens.weight,
186
+ ],
187
+ dim=0,
188
+ )
189
+ s = 1
190
+ else:
191
+ output_tokens = torch.cat(
192
+ [self.iou_token.weight, self.mask_tokens.weight], dim=0
193
+ )
194
+ output_tokens = output_tokens.unsqueeze(0).expand(
195
+ sparse_prompt_embeddings.size(0), -1, -1
196
+ )
197
+ tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
198
+
199
+ # Expand per-image data in batch direction to be per-mask
200
+ if repeat_image:
201
+ src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
202
+ else:
203
+ assert image_embeddings.shape[0] == tokens.shape[0]
204
+ src = image_embeddings
205
+ src = src + dense_prompt_embeddings
206
+ assert (
207
+ image_pe.size(0) == 1
208
+ ), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
209
+ pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
210
+ b, c, h, w = src.shape
211
+
212
+ # Run the transformer
213
+ hs, src = self.transformer(src, pos_src, tokens)
214
+ iou_token_out = hs[:, s, :]
215
+ mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
216
+
217
+ # Upscale mask embeddings and predict masks using the mask tokens
218
+ src = src.transpose(1, 2).view(b, c, h, w)
219
+ if not self.use_high_res_features:
220
+ upscaled_embedding = self.output_upscaling(src)
221
+ else:
222
+ dc1, ln1, act1, dc2, act2 = self.output_upscaling
223
+ feat_s0, feat_s1 = high_res_features
224
+ upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
225
+ upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
226
+
227
+ hyper_in_list: List[torch.Tensor] = []
228
+ for i in range(self.num_mask_tokens):
229
+ hyper_in_list.append(
230
+ self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
231
+ )
232
+ hyper_in = torch.stack(hyper_in_list, dim=1)
233
+ b, c, h, w = upscaled_embedding.shape
234
+ masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
235
+
236
+ # Generate mask quality predictions
237
+ iou_pred = self.iou_prediction_head(iou_token_out)
238
+ if self.pred_obj_scores:
239
+ assert s == 1
240
+ object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
241
+ else:
242
+ # Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
243
+ object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
244
+
245
+ return masks, iou_pred, mask_tokens_out, object_score_logits
246
+
247
+ def _get_stability_scores(self, mask_logits):
248
+ """
249
+ Compute stability scores of the mask logits based on the IoU between upper and
250
+ lower thresholds.
251
+ """
252
+ mask_logits = mask_logits.flatten(-2)
253
+ stability_delta = self.dynamic_multimask_stability_delta
254
+ area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
255
+ area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
256
+ stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
257
+ return stability_scores
258
+
259
+ def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
260
+ """
261
+ When outputting a single mask, if the stability score from the current single-mask
262
+ output (based on output token 0) falls below a threshold, we instead select from
263
+ multi-mask outputs (based on output token 1~3) the mask with the highest predicted
264
+ IoU score. This is intended to ensure a valid mask for both clicking and tracking.
265
+ """
266
+ # The best mask from multimask output tokens (1~3)
267
+ multimask_logits = all_mask_logits[:, 1:, :, :]
268
+ multimask_iou_scores = all_iou_scores[:, 1:]
269
+ best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
270
+ batch_inds = torch.arange(
271
+ multimask_iou_scores.size(0), device=all_iou_scores.device
272
+ )
273
+ best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
274
+ best_multimask_logits = best_multimask_logits.unsqueeze(1)
275
+ best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
276
+ best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
277
+
278
+ # The mask from singlemask output token 0 and its stability score
279
+ singlemask_logits = all_mask_logits[:, 0:1, :, :]
280
+ singlemask_iou_scores = all_iou_scores[:, 0:1]
281
+ stability_scores = self._get_stability_scores(singlemask_logits)
282
+ is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
283
+
284
+ # Dynamically fall back to best multimask output upon low stability scores.
285
+ mask_logits_out = torch.where(
286
+ is_stable[..., None, None].expand_as(singlemask_logits),
287
+ singlemask_logits,
288
+ best_multimask_logits,
289
+ )
290
+ iou_scores_out = torch.where(
291
+ is_stable.expand_as(singlemask_iou_scores),
292
+ singlemask_iou_scores,
293
+ best_multimask_iou_scores,
294
+ )
295
+ return mask_logits_out, iou_scores_out
sam2/modeling/sam/prompt_encoder.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import Optional, Tuple, Type
8
+
9
+ import torch
10
+ from torch import nn
11
+
12
+ from sam2.modeling.position_encoding import PositionEmbeddingRandom
13
+
14
+ from sam2.modeling.sam2_utils import LayerNorm2d
15
+
16
+
17
+ class PromptEncoder(nn.Module):
18
+ def __init__(
19
+ self,
20
+ embed_dim: int,
21
+ image_embedding_size: Tuple[int, int],
22
+ input_image_size: Tuple[int, int],
23
+ mask_in_chans: int,
24
+ activation: Type[nn.Module] = nn.GELU,
25
+ ) -> None:
26
+ """
27
+ Encodes prompts for input to SAM's mask decoder.
28
+
29
+ Arguments:
30
+ embed_dim (int): The prompts' embedding dimension
31
+ image_embedding_size (tuple(int, int)): The spatial size of the
32
+ image embedding, as (H, W).
33
+ input_image_size (int): The padded size of the image as input
34
+ to the image encoder, as (H, W).
35
+ mask_in_chans (int): The number of hidden channels used for
36
+ encoding input masks.
37
+ activation (nn.Module): The activation to use when encoding
38
+ input masks.
39
+ """
40
+ super().__init__()
41
+ self.embed_dim = embed_dim
42
+ self.input_image_size = input_image_size
43
+ self.image_embedding_size = image_embedding_size
44
+ self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
45
+
46
+ self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
47
+ point_embeddings = [
48
+ nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)
49
+ ]
50
+ self.point_embeddings = nn.ModuleList(point_embeddings)
51
+ self.not_a_point_embed = nn.Embedding(1, embed_dim)
52
+
53
+ self.mask_input_size = (
54
+ 4 * image_embedding_size[0],
55
+ 4 * image_embedding_size[1],
56
+ )
57
+ self.mask_downscaling = nn.Sequential(
58
+ nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
59
+ LayerNorm2d(mask_in_chans // 4),
60
+ activation(),
61
+ nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
62
+ LayerNorm2d(mask_in_chans),
63
+ activation(),
64
+ nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
65
+ )
66
+ self.no_mask_embed = nn.Embedding(1, embed_dim)
67
+
68
+ def get_dense_pe(self) -> torch.Tensor:
69
+ """
70
+ Returns the positional encoding used to encode point prompts,
71
+ applied to a dense set of points the shape of the image encoding.
72
+
73
+ Returns:
74
+ torch.Tensor: Positional encoding with shape
75
+ 1x(embed_dim)x(embedding_h)x(embedding_w)
76
+ """
77
+ return self.pe_layer(self.image_embedding_size).unsqueeze(0)
78
+
79
+ def _embed_points(
80
+ self,
81
+ points: torch.Tensor,
82
+ labels: torch.Tensor,
83
+ pad: bool,
84
+ ) -> torch.Tensor:
85
+ """Embeds point prompts."""
86
+ points = points + 0.5 # Shift to center of pixel
87
+ if pad:
88
+ padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
89
+ padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
90
+ points = torch.cat([points, padding_point], dim=1)
91
+ labels = torch.cat([labels, padding_label], dim=1)
92
+ point_embedding = self.pe_layer.forward_with_coords(
93
+ points, self.input_image_size
94
+ )
95
+ point_embedding[labels == -1] = 0.0
96
+ point_embedding[labels == -1] += self.not_a_point_embed.weight
97
+ point_embedding[labels == 0] += self.point_embeddings[0].weight
98
+ point_embedding[labels == 1] += self.point_embeddings[1].weight
99
+ point_embedding[labels == 2] += self.point_embeddings[2].weight
100
+ point_embedding[labels == 3] += self.point_embeddings[3].weight
101
+ return point_embedding
102
+
103
+ def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
104
+ """Embeds box prompts."""
105
+ boxes = boxes + 0.5 # Shift to center of pixel
106
+ coords = boxes.reshape(-1, 2, 2)
107
+ corner_embedding = self.pe_layer.forward_with_coords(
108
+ coords, self.input_image_size
109
+ )
110
+ corner_embedding[:, 0, :] += self.point_embeddings[2].weight
111
+ corner_embedding[:, 1, :] += self.point_embeddings[3].weight
112
+ return corner_embedding
113
+
114
+ def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
115
+ """Embeds mask inputs."""
116
+ mask_embedding = self.mask_downscaling(masks)
117
+ return mask_embedding
118
+
119
+ def _get_batch_size(
120
+ self,
121
+ points: Optional[Tuple[torch.Tensor, torch.Tensor]],
122
+ boxes: Optional[torch.Tensor],
123
+ masks: Optional[torch.Tensor],
124
+ ) -> int:
125
+ """
126
+ Gets the batch size of the output given the batch size of the input prompts.
127
+ """
128
+ if points is not None:
129
+ return points[0].shape[0]
130
+ elif boxes is not None:
131
+ return boxes.shape[0]
132
+ elif masks is not None:
133
+ return masks.shape[0]
134
+ else:
135
+ return 1
136
+
137
+ def _get_device(self) -> torch.device:
138
+ return self.point_embeddings[0].weight.device
139
+
140
+ def forward(
141
+ self,
142
+ points: Optional[Tuple[torch.Tensor, torch.Tensor]],
143
+ boxes: Optional[torch.Tensor],
144
+ masks: Optional[torch.Tensor],
145
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
146
+ """
147
+ Embeds different types of prompts, returning both sparse and dense
148
+ embeddings.
149
+
150
+ Arguments:
151
+ points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
152
+ and labels to embed.
153
+ boxes (torch.Tensor or none): boxes to embed
154
+ masks (torch.Tensor or none): masks to embed
155
+
156
+ Returns:
157
+ torch.Tensor: sparse embeddings for the points and boxes, with shape
158
+ BxNx(embed_dim), where N is determined by the number of input points
159
+ and boxes.
160
+ torch.Tensor: dense embeddings for the masks, in the shape
161
+ Bx(embed_dim)x(embed_H)x(embed_W)
162
+ """
163
+ bs = self._get_batch_size(points, boxes, masks)
164
+ sparse_embeddings = torch.empty(
165
+ (bs, 0, self.embed_dim), device=self._get_device()
166
+ )
167
+ if points is not None:
168
+ coords, labels = points
169
+ point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
170
+ sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
171
+ if boxes is not None:
172
+ box_embeddings = self._embed_boxes(boxes)
173
+ sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
174
+
175
+ if masks is not None:
176
+ dense_embeddings = self._embed_masks(masks)
177
+ else:
178
+ dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
179
+ bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
180
+ )
181
+
182
+ return sparse_embeddings, dense_embeddings
sam2/modeling/sam/transformer.py ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import contextlib
8
+ import math
9
+ import warnings
10
+ from functools import partial
11
+ from typing import Tuple, Type
12
+
13
+ import torch
14
+ import torch.nn.functional as F
15
+ from torch import nn, Tensor
16
+
17
+ from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis
18
+ from sam2.modeling.sam2_utils import MLP
19
+ from sam2.utils.misc import get_sdpa_settings
20
+
21
+ warnings.simplefilter(action="ignore", category=FutureWarning)
22
+ # Check whether Flash Attention is available (and use it by default)
23
+ OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = get_sdpa_settings()
24
+ # A fallback setting to allow all available kernels if Flash Attention fails
25
+ ALLOW_ALL_KERNELS = False
26
+
27
+
28
+ def sdp_kernel_context(dropout_p):
29
+ """
30
+ Get the context for the attention scaled dot-product kernel. We use Flash Attention
31
+ by default, but fall back to all available kernels if Flash Attention fails.
32
+ """
33
+ if ALLOW_ALL_KERNELS:
34
+ return contextlib.nullcontext()
35
+
36
+ return torch.backends.cuda.sdp_kernel(
37
+ enable_flash=USE_FLASH_ATTN,
38
+ # if Flash attention kernel is off, then math kernel needs to be enabled
39
+ enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON,
40
+ enable_mem_efficient=OLD_GPU,
41
+ )
42
+
43
+
44
+ class TwoWayTransformer(nn.Module):
45
+ def __init__(
46
+ self,
47
+ depth: int,
48
+ embedding_dim: int,
49
+ num_heads: int,
50
+ mlp_dim: int,
51
+ activation: Type[nn.Module] = nn.ReLU,
52
+ attention_downsample_rate: int = 2,
53
+ ) -> None:
54
+ """
55
+ A transformer decoder that attends to an input image using
56
+ queries whose positional embedding is supplied.
57
+
58
+ Args:
59
+ depth (int): number of layers in the transformer
60
+ embedding_dim (int): the channel dimension for the input embeddings
61
+ num_heads (int): the number of heads for multihead attention. Must
62
+ divide embedding_dim
63
+ mlp_dim (int): the channel dimension internal to the MLP block
64
+ activation (nn.Module): the activation to use in the MLP block
65
+ """
66
+ super().__init__()
67
+ self.depth = depth
68
+ self.embedding_dim = embedding_dim
69
+ self.num_heads = num_heads
70
+ self.mlp_dim = mlp_dim
71
+ self.layers = nn.ModuleList()
72
+
73
+ for i in range(depth):
74
+ self.layers.append(
75
+ TwoWayAttentionBlock(
76
+ embedding_dim=embedding_dim,
77
+ num_heads=num_heads,
78
+ mlp_dim=mlp_dim,
79
+ activation=activation,
80
+ attention_downsample_rate=attention_downsample_rate,
81
+ skip_first_layer_pe=(i == 0),
82
+ )
83
+ )
84
+
85
+ self.final_attn_token_to_image = Attention(
86
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
87
+ )
88
+ self.norm_final_attn = nn.LayerNorm(embedding_dim)
89
+
90
+ def forward(
91
+ self,
92
+ image_embedding: Tensor,
93
+ image_pe: Tensor,
94
+ point_embedding: Tensor,
95
+ ) -> Tuple[Tensor, Tensor]:
96
+ """
97
+ Args:
98
+ image_embedding (torch.Tensor): image to attend to. Should be shape
99
+ B x embedding_dim x h x w for any h and w.
100
+ image_pe (torch.Tensor): the positional encoding to add to the image. Must
101
+ have the same shape as image_embedding.
102
+ point_embedding (torch.Tensor): the embedding to add to the query points.
103
+ Must have shape B x N_points x embedding_dim for any N_points.
104
+
105
+ Returns:
106
+ torch.Tensor: the processed point_embedding
107
+ torch.Tensor: the processed image_embedding
108
+ """
109
+ # BxCxHxW -> BxHWxC == B x N_image_tokens x C
110
+ bs, c, h, w = image_embedding.shape
111
+ image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
112
+ image_pe = image_pe.flatten(2).permute(0, 2, 1)
113
+
114
+ # Prepare queries
115
+ queries = point_embedding
116
+ keys = image_embedding
117
+
118
+ # Apply transformer blocks and final layernorm
119
+ for layer in self.layers:
120
+ queries, keys = layer(
121
+ queries=queries,
122
+ keys=keys,
123
+ query_pe=point_embedding,
124
+ key_pe=image_pe,
125
+ )
126
+
127
+ # Apply the final attention layer from the points to the image
128
+ q = queries + point_embedding
129
+ k = keys + image_pe
130
+ attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
131
+ queries = queries + attn_out
132
+ queries = self.norm_final_attn(queries)
133
+
134
+ return queries, keys
135
+
136
+
137
+ class TwoWayAttentionBlock(nn.Module):
138
+ def __init__(
139
+ self,
140
+ embedding_dim: int,
141
+ num_heads: int,
142
+ mlp_dim: int = 2048,
143
+ activation: Type[nn.Module] = nn.ReLU,
144
+ attention_downsample_rate: int = 2,
145
+ skip_first_layer_pe: bool = False,
146
+ ) -> None:
147
+ """
148
+ A transformer block with four layers: (1) self-attention of sparse
149
+ inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
150
+ block on sparse inputs, and (4) cross attention of dense inputs to sparse
151
+ inputs.
152
+
153
+ Arguments:
154
+ embedding_dim (int): the channel dimension of the embeddings
155
+ num_heads (int): the number of heads in the attention layers
156
+ mlp_dim (int): the hidden dimension of the mlp block
157
+ activation (nn.Module): the activation of the mlp block
158
+ skip_first_layer_pe (bool): skip the PE on the first layer
159
+ """
160
+ super().__init__()
161
+ self.self_attn = Attention(embedding_dim, num_heads)
162
+ self.norm1 = nn.LayerNorm(embedding_dim)
163
+
164
+ self.cross_attn_token_to_image = Attention(
165
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
166
+ )
167
+ self.norm2 = nn.LayerNorm(embedding_dim)
168
+
169
+ self.mlp = MLP(
170
+ embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation
171
+ )
172
+ self.norm3 = nn.LayerNorm(embedding_dim)
173
+
174
+ self.norm4 = nn.LayerNorm(embedding_dim)
175
+ self.cross_attn_image_to_token = Attention(
176
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
177
+ )
178
+
179
+ self.skip_first_layer_pe = skip_first_layer_pe
180
+
181
+ def forward(
182
+ self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
183
+ ) -> Tuple[Tensor, Tensor]:
184
+ # Self attention block
185
+ if self.skip_first_layer_pe:
186
+ queries = self.self_attn(q=queries, k=queries, v=queries)
187
+ else:
188
+ q = queries + query_pe
189
+ attn_out = self.self_attn(q=q, k=q, v=queries)
190
+ queries = queries + attn_out
191
+ queries = self.norm1(queries)
192
+
193
+ # Cross attention block, tokens attending to image embedding
194
+ q = queries + query_pe
195
+ k = keys + key_pe
196
+ attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
197
+ queries = queries + attn_out
198
+ queries = self.norm2(queries)
199
+
200
+ # MLP block
201
+ mlp_out = self.mlp(queries)
202
+ queries = queries + mlp_out
203
+ queries = self.norm3(queries)
204
+
205
+ # Cross attention block, image embedding attending to tokens
206
+ q = queries + query_pe
207
+ k = keys + key_pe
208
+ attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
209
+ keys = keys + attn_out
210
+ keys = self.norm4(keys)
211
+
212
+ return queries, keys
213
+
214
+
215
+ class Attention(nn.Module):
216
+ """
217
+ An attention layer that allows for downscaling the size of the embedding
218
+ after projection to queries, keys, and values.
219
+ """
220
+
221
+ def __init__(
222
+ self,
223
+ embedding_dim: int,
224
+ num_heads: int,
225
+ downsample_rate: int = 1,
226
+ dropout: float = 0.0,
227
+ kv_in_dim: int = None,
228
+ ) -> None:
229
+ super().__init__()
230
+ self.embedding_dim = embedding_dim
231
+ self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
232
+ self.internal_dim = embedding_dim // downsample_rate
233
+ self.num_heads = num_heads
234
+ assert (
235
+ self.internal_dim % num_heads == 0
236
+ ), "num_heads must divide embedding_dim."
237
+
238
+ self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
239
+ self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
240
+ self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
241
+ self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
242
+
243
+ self.dropout_p = dropout
244
+
245
+ def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
246
+ b, n, c = x.shape
247
+ x = x.reshape(b, n, num_heads, c // num_heads)
248
+ return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
249
+
250
+ def _recombine_heads(self, x: Tensor) -> Tensor:
251
+ b, n_heads, n_tokens, c_per_head = x.shape
252
+ x = x.transpose(1, 2)
253
+ return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
254
+
255
+ def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
256
+ # Input projections
257
+ q = self.q_proj(q)
258
+ k = self.k_proj(k)
259
+ v = self.v_proj(v)
260
+
261
+ # Separate into heads
262
+ q = self._separate_heads(q, self.num_heads)
263
+ k = self._separate_heads(k, self.num_heads)
264
+ v = self._separate_heads(v, self.num_heads)
265
+
266
+ dropout_p = self.dropout_p if self.training else 0.0
267
+ # Attention
268
+ try:
269
+ with sdp_kernel_context(dropout_p):
270
+ out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
271
+ except Exception as e:
272
+ # Fall back to all kernels if the Flash attention kernel fails
273
+ warnings.warn(
274
+ f"Flash Attention kernel failed due to: {e}\nFalling back to all available "
275
+ f"kernels for scaled_dot_product_attention (which may have a slower speed).",
276
+ category=UserWarning,
277
+ stacklevel=2,
278
+ )
279
+ global ALLOW_ALL_KERNELS
280
+ ALLOW_ALL_KERNELS = True
281
+ out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
282
+
283
+ out = self._recombine_heads(out)
284
+ out = self.out_proj(out)
285
+
286
+ return out
287
+
288
+
289
+ class RoPEAttention(Attention):
290
+ """Attention with rotary position encoding."""
291
+
292
+ def __init__(
293
+ self,
294
+ *args,
295
+ rope_theta=10000.0,
296
+ # whether to repeat q rope to match k length
297
+ # this is needed for cross-attention to memories
298
+ rope_k_repeat=False,
299
+ feat_sizes=(32, 32), # [w, h] for stride 16 feats at 512 resolution
300
+ **kwargs,
301
+ ):
302
+ super().__init__(*args, **kwargs)
303
+
304
+ self.compute_cis = partial(
305
+ compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta
306
+ )
307
+ freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
308
+ self.freqs_cis = freqs_cis
309
+ self.rope_k_repeat = rope_k_repeat
310
+
311
+ def forward(
312
+ self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0
313
+ ) -> Tensor:
314
+ # Input projections
315
+ q = self.q_proj(q)
316
+ k = self.k_proj(k)
317
+ v = self.v_proj(v)
318
+
319
+ # Separate into heads
320
+ q = self._separate_heads(q, self.num_heads)
321
+ k = self._separate_heads(k, self.num_heads)
322
+ v = self._separate_heads(v, self.num_heads)
323
+
324
+ # Apply rotary position encoding
325
+ w = h = math.sqrt(q.shape[-2])
326
+ self.freqs_cis = self.freqs_cis.to(q.device)
327
+ if self.freqs_cis.shape[0] != q.shape[-2]:
328
+ self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
329
+ if q.shape[-2] != k.shape[-2]:
330
+ assert self.rope_k_repeat
331
+
332
+ num_k_rope = k.size(-2) - num_k_exclude_rope
333
+ q, k[:, :, :num_k_rope] = apply_rotary_enc(
334
+ q,
335
+ k[:, :, :num_k_rope],
336
+ freqs_cis=self.freqs_cis,
337
+ repeat_freqs_k=self.rope_k_repeat,
338
+ )
339
+
340
+ dropout_p = self.dropout_p if self.training else 0.0
341
+ # Attention
342
+ try:
343
+ with sdp_kernel_context(dropout_p):
344
+ out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
345
+ except Exception as e:
346
+ # Fall back to all kernels if the Flash attention kernel fails
347
+ warnings.warn(
348
+ f"Flash Attention kernel failed due to: {e}\nFalling back to all available "
349
+ f"kernels for scaled_dot_product_attention (which may have a slower speed).",
350
+ category=UserWarning,
351
+ stacklevel=2,
352
+ )
353
+ global ALLOW_ALL_KERNELS
354
+ ALLOW_ALL_KERNELS = True
355
+ out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
356
+
357
+ out = self._recombine_heads(out)
358
+ out = self.out_proj(out)
359
+
360
+ return out
sam2/modeling/sam2_base.py ADDED
@@ -0,0 +1,907 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+ import torch.distributed
9
+ import torch.nn.functional as F
10
+
11
+ from torch.nn.init import trunc_normal_
12
+
13
+ from sam2.modeling.sam.mask_decoder import MaskDecoder
14
+ from sam2.modeling.sam.prompt_encoder import PromptEncoder
15
+ from sam2.modeling.sam.transformer import TwoWayTransformer
16
+ from sam2.modeling.sam2_utils import get_1d_sine_pe, MLP, select_closest_cond_frames
17
+
18
+ # a large negative value as a placeholder score for missing objects
19
+ NO_OBJ_SCORE = -1024.0
20
+
21
+
22
+ class SAM2Base(torch.nn.Module):
23
+ def __init__(
24
+ self,
25
+ image_encoder,
26
+ memory_attention,
27
+ memory_encoder,
28
+ num_maskmem=7, # default 1 input frame + 6 previous frames
29
+ image_size=512,
30
+ backbone_stride=16, # stride of the image backbone output
31
+ sigmoid_scale_for_mem_enc=1.0, # scale factor for mask sigmoid prob
32
+ sigmoid_bias_for_mem_enc=0.0, # bias factor for mask sigmoid prob
33
+ # During evaluation, whether to binarize the sigmoid mask logits on interacted frames with clicks
34
+ binarize_mask_from_pts_for_mem_enc=False,
35
+ use_mask_input_as_output_without_sam=False, # on frames with mask input, whether to directly output the input mask without using a SAM prompt encoder + mask decoder
36
+ # The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit,
37
+ # we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model
38
+ # a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM.
39
+ max_cond_frames_in_attn=-1,
40
+ # on the first frame, whether to directly add the no-memory embedding to the image feature
41
+ # (instead of using the transformer encoder)
42
+ directly_add_no_mem_embed=False,
43
+ # whether to use high-resolution feature maps in the SAM mask decoder
44
+ use_high_res_features_in_sam=False,
45
+ # whether to output multiple (3) masks for the first click on initial conditioning frames
46
+ multimask_output_in_sam=False,
47
+ # the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`;
48
+ # default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points)
49
+ multimask_min_pt_num=1,
50
+ multimask_max_pt_num=1,
51
+ # whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`)
52
+ multimask_output_for_tracking=False,
53
+ # Whether to use multimask tokens for obj ptr; Only relevant when both
54
+ # use_obj_ptrs_in_encoder=True and multimask_output_for_tracking=True
55
+ use_multimask_token_for_obj_ptr: bool = False,
56
+ # whether to use sigmoid to restrict ious prediction to [0-1]
57
+ iou_prediction_use_sigmoid=False,
58
+ # The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5).
59
+ # For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of
60
+ # (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame.
61
+ memory_temporal_stride_for_eval=1,
62
+ # whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks)
63
+ non_overlap_masks_for_mem_enc=False,
64
+ # whether to cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
65
+ use_obj_ptrs_in_encoder=False,
66
+ # the maximum number of object pointers from other frames in encoder cross attention (only relevant when `use_obj_ptrs_in_encoder=True`)
67
+ max_obj_ptrs_in_encoder=16,
68
+ # whether to add temporal positional encoding to the object pointers in the encoder (only relevant when `use_obj_ptrs_in_encoder=True`)
69
+ add_tpos_enc_to_obj_ptrs=True,
70
+ # whether to add an extra linear projection layer for the temporal positional encoding in the object pointers to avoid potential interference
71
+ # with spatial positional encoding (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
72
+ proj_tpos_enc_in_obj_ptrs=False,
73
+ # whether to use signed distance (instead of unsigned absolute distance) in the temporal positional encoding in the object pointers
74
+ # (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
75
+ use_signed_tpos_enc_to_obj_ptrs=False,
76
+ # whether to only attend to object pointers in the past (before the current frame) in the encoder during evaluation
77
+ # (only relevant when `use_obj_ptrs_in_encoder=True`; this might avoid pointer information too far in the future to distract the initial tracking)
78
+ only_obj_ptrs_in_the_past_for_eval=False,
79
+ # Whether to predict if there is an object in the frame
80
+ pred_obj_scores: bool = False,
81
+ # Whether to use an MLP to predict object scores
82
+ pred_obj_scores_mlp: bool = False,
83
+ # Only relevant if pred_obj_scores=True and use_obj_ptrs_in_encoder=True;
84
+ # Whether to have a fixed no obj pointer when there is no object present
85
+ # or to use it as an additive embedding with obj_ptr produced by decoder
86
+ fixed_no_obj_ptr: bool = False,
87
+ # Soft no object, i.e. mix in no_obj_ptr softly,
88
+ # hope to make recovery easier if there is a mistake and mitigate accumulation of errors
89
+ soft_no_obj_ptr: bool = False,
90
+ use_mlp_for_obj_ptr_proj: bool = False,
91
+ # add no obj embedding to spatial frames
92
+ no_obj_embed_spatial: bool = False,
93
+ # extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class.
94
+ sam_mask_decoder_extra_args=None,
95
+ compile_image_encoder: bool = False,
96
+ ):
97
+ super().__init__()
98
+
99
+ # Part 1: the image backbone
100
+ self.image_encoder = image_encoder
101
+ # Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting
102
+ self.use_high_res_features_in_sam = use_high_res_features_in_sam
103
+ self.num_feature_levels = 3 if use_high_res_features_in_sam else 1
104
+ self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder
105
+ self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
106
+ if use_obj_ptrs_in_encoder:
107
+ # A conv layer to downsample the mask prompt to stride 4 (the same stride as
108
+ # low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
109
+ # so that it can be fed into the SAM mask decoder to generate a pointer.
110
+ self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
111
+ self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs
112
+ if proj_tpos_enc_in_obj_ptrs:
113
+ assert add_tpos_enc_to_obj_ptrs # these options need to be used together
114
+ self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
115
+ self.use_signed_tpos_enc_to_obj_ptrs = use_signed_tpos_enc_to_obj_ptrs
116
+ self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval
117
+
118
+ # Part 2: memory attention to condition current frame's visual features
119
+ # with memories (and obj ptrs) from past frames
120
+ self.memory_attention = memory_attention
121
+ self.hidden_dim = image_encoder.neck.d_model
122
+
123
+ # Part 3: memory encoder for the previous frame's outputs
124
+ self.memory_encoder = memory_encoder
125
+ self.mem_dim = self.hidden_dim
126
+ if hasattr(self.memory_encoder, "out_proj") and hasattr(
127
+ self.memory_encoder.out_proj, "weight"
128
+ ):
129
+ # if there is compression of memories along channel dim
130
+ self.mem_dim = self.memory_encoder.out_proj.weight.shape[0]
131
+ self.num_maskmem = num_maskmem # Number of memories accessible
132
+ # Temporal encoding of the memories
133
+ self.maskmem_tpos_enc = torch.nn.Parameter(
134
+ torch.zeros(num_maskmem, 1, 1, self.mem_dim)
135
+ )
136
+ trunc_normal_(self.maskmem_tpos_enc, std=0.02)
137
+ # a single token to indicate no memory embedding from previous frames
138
+ self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
139
+ self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
140
+ trunc_normal_(self.no_mem_embed, std=0.02)
141
+ trunc_normal_(self.no_mem_pos_enc, std=0.02)
142
+ self.directly_add_no_mem_embed = directly_add_no_mem_embed
143
+ # Apply sigmoid to the output raw mask logits (to turn them from
144
+ # range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
145
+ self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc
146
+ self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc
147
+ self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc
148
+ self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
149
+ self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
150
+ # On frames with mask input, whether to directly output the input mask without
151
+ # using a SAM prompt encoder + mask decoder
152
+ self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam
153
+ self.multimask_output_in_sam = multimask_output_in_sam
154
+ self.multimask_min_pt_num = multimask_min_pt_num
155
+ self.multimask_max_pt_num = multimask_max_pt_num
156
+ self.multimask_output_for_tracking = multimask_output_for_tracking
157
+ self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
158
+ self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid
159
+
160
+ # Part 4: SAM-style prompt encoder (for both mask and point inputs)
161
+ # and SAM-style mask decoder for the final mask output
162
+ self.image_size = image_size
163
+ self.backbone_stride = backbone_stride
164
+ self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
165
+ self.pred_obj_scores = pred_obj_scores
166
+ self.pred_obj_scores_mlp = pred_obj_scores_mlp
167
+ self.fixed_no_obj_ptr = fixed_no_obj_ptr
168
+ self.soft_no_obj_ptr = soft_no_obj_ptr
169
+ if self.fixed_no_obj_ptr:
170
+ assert self.pred_obj_scores
171
+ assert self.use_obj_ptrs_in_encoder
172
+ if self.pred_obj_scores and self.use_obj_ptrs_in_encoder:
173
+ self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
174
+ trunc_normal_(self.no_obj_ptr, std=0.02)
175
+ self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj
176
+ self.no_obj_embed_spatial = None
177
+ if no_obj_embed_spatial:
178
+ self.no_obj_embed_spatial = torch.nn.Parameter(torch.zeros(1, self.mem_dim))
179
+ trunc_normal_(self.no_obj_embed_spatial, std=0.02)
180
+
181
+ self._build_sam_heads()
182
+ self.max_cond_frames_in_attn = max_cond_frames_in_attn
183
+
184
+ # Model compilation
185
+ if compile_image_encoder:
186
+ # Compile the forward function (not the full module) to allow loading checkpoints.
187
+ print(
188
+ "Image encoder compilation is enabled. First forward pass will be slow."
189
+ )
190
+ self.image_encoder.forward = torch.compile(
191
+ self.image_encoder.forward,
192
+ mode="max-autotune",
193
+ fullgraph=True,
194
+ dynamic=False,
195
+ )
196
+
197
+ @property
198
+ def device(self):
199
+ return next(self.parameters()).device
200
+
201
+ def forward(self, *args, **kwargs):
202
+ raise NotImplementedError(
203
+ "Please use the corresponding methods in SAM2VideoPredictor for inference or SAM2Train for training/fine-tuning"
204
+ "See notebooks/video_predictor_example.ipynb for an inference example."
205
+ )
206
+
207
+ def _build_sam_heads(self):
208
+ """Build SAM-style prompt encoder and mask decoder."""
209
+ self.sam_prompt_embed_dim = self.hidden_dim
210
+ self.sam_image_embedding_size = self.image_size // self.backbone_stride
211
+
212
+ # build PromptEncoder and MaskDecoder from SAM
213
+ # (their hyperparameters like `mask_in_chans=16` are from SAM code)
214
+ self.sam_prompt_encoder = PromptEncoder(
215
+ embed_dim=self.sam_prompt_embed_dim,
216
+ image_embedding_size=(
217
+ self.sam_image_embedding_size,
218
+ self.sam_image_embedding_size,
219
+ ),
220
+ input_image_size=(self.image_size, self.image_size),
221
+ mask_in_chans=16,
222
+ )
223
+ self.sam_mask_decoder = MaskDecoder(
224
+ num_multimask_outputs=3,
225
+ transformer=TwoWayTransformer(
226
+ depth=2,
227
+ embedding_dim=self.sam_prompt_embed_dim,
228
+ mlp_dim=2048,
229
+ num_heads=8,
230
+ ),
231
+ transformer_dim=self.sam_prompt_embed_dim,
232
+ iou_head_depth=3,
233
+ iou_head_hidden_dim=256,
234
+ use_high_res_features=self.use_high_res_features_in_sam,
235
+ iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid,
236
+ pred_obj_scores=self.pred_obj_scores,
237
+ pred_obj_scores_mlp=self.pred_obj_scores_mlp,
238
+ use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr,
239
+ **(self.sam_mask_decoder_extra_args or {}),
240
+ )
241
+ if self.use_obj_ptrs_in_encoder:
242
+ # a linear projection on SAM output tokens to turn them into object pointers
243
+ self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
244
+ if self.use_mlp_for_obj_ptr_proj:
245
+ self.obj_ptr_proj = MLP(
246
+ self.hidden_dim, self.hidden_dim, self.hidden_dim, 3
247
+ )
248
+ else:
249
+ self.obj_ptr_proj = torch.nn.Identity()
250
+ if self.proj_tpos_enc_in_obj_ptrs:
251
+ # a linear projection on temporal positional encoding in object pointers to
252
+ # avoid potential interference with spatial positional encoding
253
+ self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
254
+ else:
255
+ self.obj_ptr_tpos_proj = torch.nn.Identity()
256
+
257
+ def _forward_sam_heads(
258
+ self,
259
+ backbone_features,
260
+ point_inputs=None,
261
+ mask_inputs=None,
262
+ high_res_features=None,
263
+ multimask_output=False,
264
+ ):
265
+ """
266
+ Forward SAM prompt encoders and mask heads.
267
+
268
+ Inputs:
269
+ - backbone_features: image features of [B, C, H, W] shape
270
+ - point_inputs: a dictionary with "point_coords" and "point_labels", where
271
+ 1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the
272
+ absolute pixel-unit coordinate in (x, y) format of the P input points
273
+ 2) "point_labels" has shape [B, P] and int32 dtype, where 1 means
274
+ positive clicks, 0 means negative clicks, and -1 means padding
275
+ - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the
276
+ same spatial size as the image.
277
+ - high_res_features: either 1) None or 2) or a list of length 2 containing
278
+ two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively,
279
+ which will be used as high-resolution feature maps for SAM decoder.
280
+ - multimask_output: if it's True, we output 3 candidate masks and their 3
281
+ corresponding IoU estimates, and if it's False, we output only 1 mask and
282
+ its corresponding IoU estimate.
283
+
284
+ Outputs:
285
+ - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if
286
+ `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM
287
+ output mask logits (before sigmoid) for the low-resolution masks, with 4x
288
+ the resolution (1/4 stride) of the input backbone_features.
289
+ - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3
290
+ if `multimask_output=True` and M = 1 if `multimask_output=False`),
291
+ upsampled from the low-resolution masks, with shape size as the image
292
+ (stride is 1 pixel).
293
+ - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1
294
+ if `multimask_output=False`), the estimated IoU of each output mask.
295
+ - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`.
296
+ If `multimask_output=True`, it's the mask with the highest IoU estimate.
297
+ If `multimask_output=False`, it's the same as `low_res_multimasks`.
298
+ - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`.
299
+ If `multimask_output=True`, it's the mask with the highest IoU estimate.
300
+ If `multimask_output=False`, it's the same as `high_res_multimasks`.
301
+ - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted
302
+ based on the output token from the SAM mask decoder.
303
+ """
304
+ B = backbone_features.size(0)
305
+ device = backbone_features.device
306
+ assert backbone_features.size(1) == self.sam_prompt_embed_dim
307
+ assert backbone_features.size(2) == self.sam_image_embedding_size
308
+ assert backbone_features.size(3) == self.sam_image_embedding_size
309
+
310
+ # a) Handle point prompts
311
+ if point_inputs is not None:
312
+ sam_point_coords = point_inputs["point_coords"]
313
+ sam_point_labels = point_inputs["point_labels"]
314
+ assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
315
+ else:
316
+ # If no points are provide, pad with an empty point (with label -1)
317
+ sam_point_coords = torch.zeros(B, 1, 2, device=device)
318
+ sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
319
+
320
+ # b) Handle mask prompts
321
+ if mask_inputs is not None:
322
+ # If mask_inputs is provided, downsize it into low-res mask input if needed
323
+ # and feed it as a dense mask prompt into the SAM mask encoder
324
+ assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
325
+ if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
326
+ sam_mask_prompt = F.interpolate(
327
+ mask_inputs.float(),
328
+ size=self.sam_prompt_encoder.mask_input_size,
329
+ align_corners=False,
330
+ mode="bilinear",
331
+ antialias=True, # use antialias for downsampling
332
+ )
333
+ else:
334
+ sam_mask_prompt = mask_inputs
335
+ else:
336
+ # Otherwise, simply feed None (and SAM's prompt encoder will add
337
+ # a learned `no_mask_embed` to indicate no mask input in this case).
338
+ sam_mask_prompt = None
339
+
340
+ sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
341
+ points=(sam_point_coords, sam_point_labels),
342
+ boxes=None,
343
+ masks=sam_mask_prompt,
344
+ )
345
+ (
346
+ low_res_multimasks,
347
+ ious,
348
+ sam_output_tokens,
349
+ object_score_logits,
350
+ ) = self.sam_mask_decoder(
351
+ image_embeddings=backbone_features,
352
+ image_pe=self.sam_prompt_encoder.get_dense_pe(),
353
+ sparse_prompt_embeddings=sparse_embeddings,
354
+ dense_prompt_embeddings=dense_embeddings,
355
+ multimask_output=multimask_output,
356
+ repeat_image=False, # the image is already batched
357
+ high_res_features=high_res_features,
358
+ )
359
+ if self.pred_obj_scores:
360
+ is_obj_appearing = object_score_logits > 0
361
+
362
+ # Mask used for spatial memories is always a *hard* choice between obj and no obj,
363
+ # consistent with the actual mask prediction
364
+ low_res_multimasks = torch.where(
365
+ is_obj_appearing[:, None, None],
366
+ low_res_multimasks,
367
+ NO_OBJ_SCORE,
368
+ )
369
+
370
+ # convert masks from possibly bfloat16 (or float16) to float32
371
+ # (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
372
+ low_res_multimasks = low_res_multimasks.float()
373
+ high_res_multimasks = F.interpolate(
374
+ low_res_multimasks,
375
+ size=(self.image_size, self.image_size),
376
+ mode="bilinear",
377
+ align_corners=False,
378
+ )
379
+
380
+ sam_output_token = sam_output_tokens[:, 0]
381
+ if multimask_output:
382
+ # take the best mask prediction (with the highest IoU estimation)
383
+ best_iou_inds = torch.argmax(ious, dim=-1)
384
+ batch_inds = torch.arange(B, device=device)
385
+ low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
386
+ high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
387
+ if sam_output_tokens.size(1) > 1:
388
+ sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
389
+ else:
390
+ low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
391
+
392
+ # Extract object pointer from the SAM output token (with occlusion handling)
393
+ obj_ptr = self.obj_ptr_proj(sam_output_token)
394
+ if self.pred_obj_scores:
395
+ # Allow *soft* no obj ptr, unlike for masks
396
+ if self.soft_no_obj_ptr:
397
+ lambda_is_obj_appearing = object_score_logits.sigmoid()
398
+ else:
399
+ lambda_is_obj_appearing = is_obj_appearing.float()
400
+
401
+ if self.fixed_no_obj_ptr:
402
+ obj_ptr = lambda_is_obj_appearing * obj_ptr
403
+ obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
404
+
405
+ return (
406
+ low_res_multimasks,
407
+ high_res_multimasks,
408
+ ious,
409
+ low_res_masks,
410
+ high_res_masks,
411
+ obj_ptr,
412
+ object_score_logits,
413
+ )
414
+
415
+ def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
416
+ """
417
+ Directly turn binary `mask_inputs` into a output mask logits without using SAM.
418
+ (same input and output shapes as in _forward_sam_heads above).
419
+ """
420
+ # Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
421
+ out_scale, out_bias = 20.0, -10.0 # sigmoid(-10.0)=4.5398e-05
422
+ mask_inputs_float = mask_inputs.float()
423
+ high_res_masks = mask_inputs_float * out_scale + out_bias
424
+ low_res_masks = F.interpolate(
425
+ high_res_masks,
426
+ size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4),
427
+ align_corners=False,
428
+ mode="bilinear",
429
+ antialias=True, # use antialias for downsampling
430
+ )
431
+ # a dummy IoU prediction of all 1's under mask input
432
+ ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
433
+ if not self.use_obj_ptrs_in_encoder:
434
+ # all zeros as a dummy object pointer (of shape [B, C])
435
+ obj_ptr = torch.zeros(
436
+ mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device
437
+ )
438
+ else:
439
+ # produce an object pointer using the SAM decoder from the mask input
440
+ _, _, _, _, _, obj_ptr, _ = self._forward_sam_heads(
441
+ backbone_features=backbone_features,
442
+ mask_inputs=self.mask_downsample(mask_inputs_float),
443
+ high_res_features=high_res_features,
444
+ )
445
+ # In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
446
+ # Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
447
+ # on the object_scores from the SAM decoder.
448
+ is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
449
+ is_obj_appearing = is_obj_appearing[..., None]
450
+ lambda_is_obj_appearing = is_obj_appearing.float()
451
+ object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
452
+ if self.pred_obj_scores:
453
+ if self.fixed_no_obj_ptr:
454
+ obj_ptr = lambda_is_obj_appearing * obj_ptr
455
+ obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
456
+
457
+ return (
458
+ low_res_masks,
459
+ high_res_masks,
460
+ ious,
461
+ low_res_masks,
462
+ high_res_masks,
463
+ obj_ptr,
464
+ object_score_logits,
465
+ )
466
+
467
+ def forward_image(self, img_batch: torch.Tensor):
468
+ """Get the image feature on the input batch."""
469
+ backbone_out = self.image_encoder(img_batch)
470
+ if self.use_high_res_features_in_sam:
471
+ # precompute projected level 0 and level 1 features in SAM decoder
472
+ # to avoid running it again on every SAM click
473
+ backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
474
+ backbone_out["backbone_fpn"][0]
475
+ )
476
+ backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
477
+ backbone_out["backbone_fpn"][1]
478
+ )
479
+ return backbone_out
480
+
481
+ def _prepare_backbone_features(self, backbone_out):
482
+ """Prepare and flatten visual features."""
483
+ backbone_out = backbone_out.copy()
484
+ assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
485
+ assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels
486
+
487
+ feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
488
+ vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]
489
+
490
+ feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
491
+ # flatten NxCxHxW to HWxNxC
492
+ vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
493
+ vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]
494
+
495
+ return backbone_out, vision_feats, vision_pos_embeds, feat_sizes
496
+
497
+ def _prepare_memory_conditioned_features(
498
+ self,
499
+ frame_idx,
500
+ is_init_cond_frame,
501
+ current_vision_feats,
502
+ current_vision_pos_embeds,
503
+ feat_sizes,
504
+ output_dict,
505
+ num_frames,
506
+ track_in_reverse=False, # tracking in reverse time order (for demo usage)
507
+ ):
508
+ """Fuse the current frame's visual feature map with previous memory."""
509
+ B = current_vision_feats[-1].size(1) # batch size on this frame
510
+ C = self.hidden_dim
511
+ H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
512
+ device = current_vision_feats[-1].device
513
+ # The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
514
+ # In this case, we skip the fusion with any memory.
515
+ if self.num_maskmem == 0: # Disable memory and skip fusion
516
+ pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
517
+ return pix_feat
518
+
519
+ num_obj_ptr_tokens = 0
520
+ tpos_sign_mul = -1 if track_in_reverse else 1
521
+ # Step 1: condition the visual features of the current frame on previous memories
522
+ if not is_init_cond_frame:
523
+ # Retrieve the memories encoded with the maskmem backbone
524
+ to_cat_memory, to_cat_memory_pos_embed = [], []
525
+ # Add conditioning frames's output first (all cond frames have t_pos=0 for
526
+ # when getting temporal positional embedding below)
527
+ assert len(output_dict["cond_frame_outputs"]) > 0
528
+ # Select a maximum number of temporally closest cond frames for cross attention
529
+ cond_outputs = output_dict["cond_frame_outputs"]
530
+ selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
531
+ frame_idx, cond_outputs, self.max_cond_frames_in_attn
532
+ )
533
+ t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()]
534
+ # Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
535
+ # the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
536
+ # We also allow taking the memory frame non-consecutively (with stride>1), in which case
537
+ # we take (self.num_maskmem - 2) frames among every stride-th frames plus the last frame.
538
+ stride = 1 if self.training else self.memory_temporal_stride_for_eval
539
+ for t_pos in range(1, self.num_maskmem):
540
+ t_rel = self.num_maskmem - t_pos # how many frames before current frame
541
+ if t_rel == 1:
542
+ # for t_rel == 1, we take the last frame (regardless of r)
543
+ if not track_in_reverse:
544
+ # the frame immediately before this frame (i.e. frame_idx - 1)
545
+ prev_frame_idx = frame_idx - t_rel
546
+ else:
547
+ # the frame immediately after this frame (i.e. frame_idx + 1)
548
+ prev_frame_idx = frame_idx + t_rel
549
+ else:
550
+ # for t_rel >= 2, we take the memory frame from every r-th frames
551
+ if not track_in_reverse:
552
+ # first find the nearest frame among every r-th frames before this frame
553
+ # for r=1, this would be (frame_idx - 2)
554
+ prev_frame_idx = ((frame_idx - 2) // stride) * stride
555
+ # then seek further among every r-th frames
556
+ prev_frame_idx = prev_frame_idx - (t_rel - 2) * stride
557
+ else:
558
+ # first find the nearest frame among every r-th frames after this frame
559
+ # for r=1, this would be (frame_idx + 2)
560
+ prev_frame_idx = -(-(frame_idx + 2) // stride) * stride
561
+ # then seek further among every r-th frames
562
+ prev_frame_idx = prev_frame_idx + (t_rel - 2) * stride
563
+ out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None)
564
+ if out is None:
565
+ # If an unselected conditioning frame is among the last (self.num_maskmem - 1)
566
+ # frames, we still attend to it as if it's a non-conditioning frame.
567
+ out = unselected_cond_outputs.get(prev_frame_idx, None)
568
+ t_pos_and_prevs.append((t_pos, out))
569
+
570
+ for t_pos, prev in t_pos_and_prevs:
571
+ if prev is None:
572
+ continue # skip padding frames
573
+ # "maskmem_features" might have been offloaded to CPU in demo use cases,
574
+ # so we load it back to GPU (it's a no-op if it's already on GPU).
575
+ feats = prev["maskmem_features"].to(device, non_blocking=True)
576
+ to_cat_memory.append(feats.flatten(2).permute(2, 0, 1))
577
+ # Spatial positional encoding (it might have been offloaded to CPU in eval)
578
+ maskmem_enc = prev["maskmem_pos_enc"][-1].to(device)
579
+ maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
580
+ # Temporal positional encoding
581
+ maskmem_enc = (
582
+ maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1]
583
+ )
584
+ to_cat_memory_pos_embed.append(maskmem_enc)
585
+
586
+ # Construct the list of past object pointers
587
+ if self.use_obj_ptrs_in_encoder:
588
+ max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
589
+ # First add those object pointers from selected conditioning frames
590
+ # (optionally, only include object pointers in the past during evaluation)
591
+ if not self.training and self.only_obj_ptrs_in_the_past_for_eval:
592
+ ptr_cond_outputs = {
593
+ t: out
594
+ for t, out in selected_cond_outputs.items()
595
+ if (t >= frame_idx if track_in_reverse else t <= frame_idx)
596
+ }
597
+ else:
598
+ ptr_cond_outputs = selected_cond_outputs
599
+ pos_and_ptrs = [
600
+ # Temporal pos encoding contains how far away each pointer is from current frame
601
+ (
602
+ (
603
+ (frame_idx - t) * tpos_sign_mul
604
+ if self.use_signed_tpos_enc_to_obj_ptrs
605
+ else abs(frame_idx - t)
606
+ ),
607
+ out["obj_ptr"],
608
+ )
609
+ for t, out in ptr_cond_outputs.items()
610
+ ]
611
+ # Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
612
+ for t_diff in range(1, max_obj_ptrs_in_encoder):
613
+ t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
614
+ if t < 0 or (num_frames is not None and t >= num_frames):
615
+ break
616
+ out = output_dict["non_cond_frame_outputs"].get(
617
+ t, unselected_cond_outputs.get(t, None)
618
+ )
619
+ if out is not None:
620
+ pos_and_ptrs.append((t_diff, out["obj_ptr"]))
621
+ # If we have at least one object pointer, add them to the across attention
622
+ if len(pos_and_ptrs) > 0:
623
+ pos_list, ptrs_list = zip(*pos_and_ptrs)
624
+ # stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
625
+ obj_ptrs = torch.stack(ptrs_list, dim=0)
626
+ # a temporal positional embedding based on how far each object pointer is from
627
+ # the current frame (sine embedding normalized by the max pointer num).
628
+ if self.add_tpos_enc_to_obj_ptrs:
629
+ t_diff_max = max_obj_ptrs_in_encoder - 1
630
+ tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim
631
+ obj_pos = torch.tensor(pos_list, device=device)
632
+ obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
633
+ obj_pos = self.obj_ptr_tpos_proj(obj_pos)
634
+ obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim)
635
+ else:
636
+ obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim)
637
+ if self.mem_dim < C:
638
+ # split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
639
+ obj_ptrs = obj_ptrs.reshape(
640
+ -1, B, C // self.mem_dim, self.mem_dim
641
+ )
642
+ obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
643
+ obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
644
+ to_cat_memory.append(obj_ptrs)
645
+ to_cat_memory_pos_embed.append(obj_pos)
646
+ num_obj_ptr_tokens = obj_ptrs.shape[0]
647
+ else:
648
+ num_obj_ptr_tokens = 0
649
+ else:
650
+ # for initial conditioning frames, encode them without using any previous memory
651
+ if self.directly_add_no_mem_embed:
652
+ # directly add no-mem embedding (instead of using the transformer encoder)
653
+ pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
654
+ pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
655
+ return pix_feat_with_mem
656
+
657
+ # Use a dummy token on the first frame (to avoid empty memory input to tranformer encoder)
658
+ to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)]
659
+ to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]
660
+
661
+ # Step 2: Concatenate the memories and forward through the transformer encoder
662
+ memory = torch.cat(to_cat_memory, dim=0)
663
+ memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)
664
+
665
+ pix_feat_with_mem = self.memory_attention(
666
+ curr=current_vision_feats,
667
+ curr_pos=current_vision_pos_embeds,
668
+ memory=memory,
669
+ memory_pos=memory_pos_embed,
670
+ num_obj_ptr_tokens=num_obj_ptr_tokens,
671
+ )
672
+ # reshape the output (HW)BC => BCHW
673
+ pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
674
+ return pix_feat_with_mem
675
+
676
+ def _encode_new_memory(
677
+ self,
678
+ current_vision_feats,
679
+ feat_sizes,
680
+ pred_masks_high_res,
681
+ object_score_logits,
682
+ is_mask_from_pts,
683
+ ):
684
+ """Encode the current image and its prediction into a memory feature."""
685
+ B = current_vision_feats[-1].size(1) # batch size on this frame
686
+ C = self.hidden_dim
687
+ H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
688
+ # top-level feature, (HW)BC => BCHW
689
+ pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
690
+ if self.non_overlap_masks_for_mem_enc and not self.training:
691
+ # optionally, apply non-overlapping constraints to the masks (it's applied
692
+ # in the batch dimension and should only be used during eval, where all
693
+ # the objects come from the same video under batch size 1).
694
+ pred_masks_high_res = self._apply_non_overlapping_constraints(
695
+ pred_masks_high_res
696
+ )
697
+ # scale the raw mask logits with a temperature before applying sigmoid
698
+ binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
699
+ if binarize and not self.training:
700
+ mask_for_mem = (pred_masks_high_res > 0).float()
701
+ else:
702
+ # apply sigmoid on the raw mask logits to turn them into range (0, 1)
703
+ mask_for_mem = torch.sigmoid(pred_masks_high_res)
704
+ # apply scale and bias terms to the sigmoid probabilities
705
+ if self.sigmoid_scale_for_mem_enc != 1.0:
706
+ mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
707
+ if self.sigmoid_bias_for_mem_enc != 0.0:
708
+ mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
709
+ maskmem_out = self.memory_encoder(
710
+ pix_feat, mask_for_mem, skip_mask_sigmoid=True # sigmoid already applied
711
+ )
712
+ maskmem_features = maskmem_out["vision_features"]
713
+ maskmem_pos_enc = maskmem_out["vision_pos_enc"]
714
+ # add a no-object embedding to the spatial memory to indicate that the frame
715
+ # is predicted to be occluded (i.e. no object is appearing in the frame)
716
+ if self.no_obj_embed_spatial is not None:
717
+ is_obj_appearing = (object_score_logits > 0).float()
718
+ maskmem_features += (
719
+ 1 - is_obj_appearing[..., None, None]
720
+ ) * self.no_obj_embed_spatial[..., None, None].expand(
721
+ *maskmem_features.shape
722
+ )
723
+
724
+ return maskmem_features, maskmem_pos_enc
725
+
726
+ def _track_step(
727
+ self,
728
+ frame_idx,
729
+ is_init_cond_frame,
730
+ current_vision_feats,
731
+ current_vision_pos_embeds,
732
+ feat_sizes,
733
+ point_inputs,
734
+ mask_inputs,
735
+ output_dict,
736
+ num_frames,
737
+ track_in_reverse,
738
+ prev_sam_mask_logits,
739
+ ):
740
+ current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
741
+ # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
742
+ if len(current_vision_feats) > 1:
743
+ high_res_features = [
744
+ x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
745
+ for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
746
+ ]
747
+ else:
748
+ high_res_features = None
749
+ if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
750
+ # When use_mask_input_as_output_without_sam=True, we directly output the mask input
751
+ # (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
752
+ pix_feat = current_vision_feats[-1].permute(1, 2, 0)
753
+ pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
754
+ sam_outputs = self._use_mask_as_output(
755
+ pix_feat, high_res_features, mask_inputs
756
+ )
757
+ else:
758
+ # fused the visual feature with previous memory features in the memory bank
759
+ pix_feat = self._prepare_memory_conditioned_features(
760
+ frame_idx=frame_idx,
761
+ is_init_cond_frame=is_init_cond_frame,
762
+ current_vision_feats=current_vision_feats[-1:],
763
+ current_vision_pos_embeds=current_vision_pos_embeds[-1:],
764
+ feat_sizes=feat_sizes[-1:],
765
+ output_dict=output_dict,
766
+ num_frames=num_frames,
767
+ track_in_reverse=track_in_reverse,
768
+ )
769
+ # apply SAM-style segmentation head
770
+ # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
771
+ # e.g. in demo where such logits come from earlier interaction instead of correction sampling
772
+ # (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
773
+ if prev_sam_mask_logits is not None:
774
+ assert point_inputs is not None and mask_inputs is None
775
+ mask_inputs = prev_sam_mask_logits
776
+ multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
777
+ sam_outputs = self._forward_sam_heads(
778
+ backbone_features=pix_feat,
779
+ point_inputs=point_inputs,
780
+ mask_inputs=mask_inputs,
781
+ high_res_features=high_res_features,
782
+ multimask_output=multimask_output,
783
+ )
784
+
785
+ return current_out, sam_outputs, high_res_features, pix_feat
786
+
787
+ def _encode_memory_in_output(
788
+ self,
789
+ current_vision_feats,
790
+ feat_sizes,
791
+ point_inputs,
792
+ run_mem_encoder,
793
+ high_res_masks,
794
+ object_score_logits,
795
+ current_out,
796
+ ):
797
+ if run_mem_encoder and self.num_maskmem > 0:
798
+ high_res_masks_for_mem_enc = high_res_masks
799
+ maskmem_features, maskmem_pos_enc = self._encode_new_memory(
800
+ current_vision_feats=current_vision_feats,
801
+ feat_sizes=feat_sizes,
802
+ pred_masks_high_res=high_res_masks_for_mem_enc,
803
+ object_score_logits=object_score_logits,
804
+ is_mask_from_pts=(point_inputs is not None),
805
+ )
806
+ current_out["maskmem_features"] = maskmem_features
807
+ current_out["maskmem_pos_enc"] = maskmem_pos_enc
808
+ else:
809
+ current_out["maskmem_features"] = None
810
+ current_out["maskmem_pos_enc"] = None
811
+
812
+ def track_step(
813
+ self,
814
+ frame_idx,
815
+ is_init_cond_frame,
816
+ current_vision_feats,
817
+ current_vision_pos_embeds,
818
+ feat_sizes,
819
+ point_inputs,
820
+ mask_inputs,
821
+ output_dict,
822
+ num_frames,
823
+ track_in_reverse=False, # tracking in reverse time order (for demo usage)
824
+ # Whether to run the memory encoder on the predicted masks. Sometimes we might want
825
+ # to skip the memory encoder with `run_mem_encoder=False`. For example,
826
+ # in demo we might call `track_step` multiple times for each user click,
827
+ # and only encode the memory when the user finalizes their clicks. And in ablation
828
+ # settings like SAM training on static images, we don't need the memory encoder.
829
+ run_mem_encoder=True,
830
+ # The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
831
+ prev_sam_mask_logits=None,
832
+ ):
833
+ current_out, sam_outputs, _, _ = self._track_step(
834
+ frame_idx,
835
+ is_init_cond_frame,
836
+ current_vision_feats,
837
+ current_vision_pos_embeds,
838
+ feat_sizes,
839
+ point_inputs,
840
+ mask_inputs,
841
+ output_dict,
842
+ num_frames,
843
+ track_in_reverse,
844
+ prev_sam_mask_logits,
845
+ )
846
+
847
+ (
848
+ _,
849
+ _,
850
+ _,
851
+ low_res_masks,
852
+ high_res_masks,
853
+ obj_ptr,
854
+ object_score_logits,
855
+ ) = sam_outputs
856
+
857
+ current_out["pred_masks"] = low_res_masks
858
+ current_out["pred_masks_high_res"] = high_res_masks
859
+ current_out["obj_ptr"] = obj_ptr
860
+ if not self.training:
861
+ # Only add this in inference (to avoid unused param in activation checkpointing;
862
+ # it's mainly used in the demo to encode spatial memories w/ consolidated masks)
863
+ current_out["object_score_logits"] = object_score_logits
864
+
865
+ # Finally run the memory encoder on the predicted mask to encode
866
+ # it into a new memory feature (that can be used in future frames)
867
+ self._encode_memory_in_output(
868
+ current_vision_feats,
869
+ feat_sizes,
870
+ point_inputs,
871
+ run_mem_encoder,
872
+ high_res_masks,
873
+ object_score_logits,
874
+ current_out,
875
+ )
876
+
877
+ return current_out
878
+
879
+ def _use_multimask(self, is_init_cond_frame, point_inputs):
880
+ """Whether to use multimask output in the SAM head."""
881
+ num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
882
+ multimask_output = (
883
+ self.multimask_output_in_sam
884
+ and (is_init_cond_frame or self.multimask_output_for_tracking)
885
+ and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
886
+ )
887
+ return multimask_output
888
+
889
+ def _apply_non_overlapping_constraints(self, pred_masks):
890
+ """
891
+ Apply non-overlapping constraints to the object scores in pred_masks. Here we
892
+ keep only the highest scoring object at each spatial location in pred_masks.
893
+ """
894
+ batch_size = pred_masks.size(0)
895
+ if batch_size == 1:
896
+ return pred_masks
897
+
898
+ device = pred_masks.device
899
+ # "max_obj_inds": object index of the object with the highest score at each location
900
+ max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
901
+ # "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
902
+ batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
903
+ keep = max_obj_inds == batch_obj_inds
904
+ # suppress overlapping regions' scores below -10.0 so that the foreground regions
905
+ # don't overlap (here sigmoid(-10.0)=4.5398e-05)
906
+ pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
907
+ return pred_masks
sam2/modeling/sam2_utils.py ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+
8
+ import copy
9
+ from typing import Tuple
10
+
11
+ import numpy as np
12
+ import torch
13
+ import torch.nn as nn
14
+ import torch.nn.functional as F
15
+
16
+ from sam2.utils.misc import mask_to_box
17
+
18
+
19
+ def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
20
+ """
21
+ Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs`
22
+ that are temporally closest to the current frame at `frame_idx`. Here, we take
23
+ - a) the closest conditioning frame before `frame_idx` (if any);
24
+ - b) the closest conditioning frame after `frame_idx` (if any);
25
+ - c) any other temporally closest conditioning frames until reaching a total
26
+ of `max_cond_frame_num` conditioning frames.
27
+
28
+ Outputs:
29
+ - selected_outputs: selected items (keys & values) from `cond_frame_outputs`.
30
+ - unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`.
31
+ """
32
+ if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
33
+ selected_outputs = cond_frame_outputs
34
+ unselected_outputs = {}
35
+ else:
36
+ assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
37
+ selected_outputs = {}
38
+
39
+ # the closest conditioning frame before `frame_idx` (if any)
40
+ idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
41
+ if idx_before is not None:
42
+ selected_outputs[idx_before] = cond_frame_outputs[idx_before]
43
+
44
+ # the closest conditioning frame after `frame_idx` (if any)
45
+ idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
46
+ if idx_after is not None:
47
+ selected_outputs[idx_after] = cond_frame_outputs[idx_after]
48
+
49
+ # add other temporally closest conditioning frames until reaching a total
50
+ # of `max_cond_frame_num` conditioning frames.
51
+ num_remain = max_cond_frame_num - len(selected_outputs)
52
+ inds_remain = sorted(
53
+ (t for t in cond_frame_outputs if t not in selected_outputs),
54
+ key=lambda x: abs(x - frame_idx),
55
+ )[:num_remain]
56
+ selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
57
+ unselected_outputs = {
58
+ t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs
59
+ }
60
+
61
+ return selected_outputs, unselected_outputs
62
+
63
+
64
+ def get_1d_sine_pe(pos_inds, dim, temperature=10000):
65
+ """
66
+ Get 1D sine positional embedding as in the original Transformer paper.
67
+ """
68
+ pe_dim = dim // 2
69
+ dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
70
+ dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)
71
+
72
+ pos_embed = pos_inds.unsqueeze(-1) / dim_t
73
+ pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
74
+ return pos_embed
75
+
76
+
77
+ def get_activation_fn(activation):
78
+ """Return an activation function given a string"""
79
+ if activation == "relu":
80
+ return F.relu
81
+ if activation == "gelu":
82
+ return F.gelu
83
+ if activation == "glu":
84
+ return F.glu
85
+ raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
86
+
87
+
88
+ def get_clones(module, N):
89
+ return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
90
+
91
+
92
+ class DropPath(nn.Module):
93
+ # adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
94
+ def __init__(self, drop_prob=0.0, scale_by_keep=True):
95
+ super(DropPath, self).__init__()
96
+ self.drop_prob = drop_prob
97
+ self.scale_by_keep = scale_by_keep
98
+
99
+ def forward(self, x):
100
+ if self.drop_prob == 0.0 or not self.training:
101
+ return x
102
+ keep_prob = 1 - self.drop_prob
103
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1)
104
+ random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
105
+ if keep_prob > 0.0 and self.scale_by_keep:
106
+ random_tensor.div_(keep_prob)
107
+ return x * random_tensor
108
+
109
+
110
+ # Lightly adapted from
111
+ # https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
112
+ class MLP(nn.Module):
113
+ def __init__(
114
+ self,
115
+ input_dim: int,
116
+ hidden_dim: int,
117
+ output_dim: int,
118
+ num_layers: int,
119
+ activation: nn.Module = nn.ReLU,
120
+ sigmoid_output: bool = False,
121
+ ) -> None:
122
+ super().__init__()
123
+ self.num_layers = num_layers
124
+ h = [hidden_dim] * (num_layers - 1)
125
+ self.layers = nn.ModuleList(
126
+ nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
127
+ )
128
+ self.sigmoid_output = sigmoid_output
129
+ self.act = activation()
130
+
131
+ def forward(self, x):
132
+ for i, layer in enumerate(self.layers):
133
+ x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
134
+ if self.sigmoid_output:
135
+ x = F.sigmoid(x)
136
+ return x
137
+
138
+
139
+ # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
140
+ # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
141
+ class LayerNorm2d(nn.Module):
142
+ def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
143
+ super().__init__()
144
+ self.weight = nn.Parameter(torch.ones(num_channels))
145
+ self.bias = nn.Parameter(torch.zeros(num_channels))
146
+ self.eps = eps
147
+
148
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
149
+ u = x.mean(1, keepdim=True)
150
+ s = (x - u).pow(2).mean(1, keepdim=True)
151
+ x = (x - u) / torch.sqrt(s + self.eps)
152
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
153
+ return x
154
+
155
+
156
+ def sample_box_points(
157
+ masks: torch.Tensor,
158
+ noise: float = 0.1, # SAM default
159
+ noise_bound: int = 20, # SAM default
160
+ top_left_label: int = 2,
161
+ bottom_right_label: int = 3,
162
+ ) -> Tuple[np.array, np.array]:
163
+ """
164
+ Sample a noised version of the top left and bottom right corners of a given `bbox`
165
+
166
+ Inputs:
167
+ - masks: [B, 1, H,W] boxes, dtype=torch.Tensor
168
+ - noise: noise as a fraction of box width and height, dtype=float
169
+ - noise_bound: maximum amount of noise (in pure pixesl), dtype=int
170
+
171
+ Returns:
172
+ - box_coords: [B, num_pt, 2], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.float
173
+ - box_labels: [B, num_pt], label 2 is reserverd for top left and 3 for bottom right corners, dtype=torch.int32
174
+ """
175
+ device = masks.device
176
+ box_coords = mask_to_box(masks)
177
+ B, _, H, W = masks.shape
178
+ box_labels = torch.tensor(
179
+ [top_left_label, bottom_right_label], dtype=torch.int, device=device
180
+ ).repeat(B)
181
+ if noise > 0.0:
182
+ if not isinstance(noise_bound, torch.Tensor):
183
+ noise_bound = torch.tensor(noise_bound, device=device)
184
+ bbox_w = box_coords[..., 2] - box_coords[..., 0]
185
+ bbox_h = box_coords[..., 3] - box_coords[..., 1]
186
+ max_dx = torch.min(bbox_w * noise, noise_bound)
187
+ max_dy = torch.min(bbox_h * noise, noise_bound)
188
+ box_noise = 2 * torch.rand(B, 1, 4, device=device) - 1
189
+ box_noise = box_noise * torch.stack((max_dx, max_dy, max_dx, max_dy), dim=-1)
190
+
191
+ box_coords = box_coords + box_noise
192
+ img_bounds = (
193
+ torch.tensor([W, H, W, H], device=device) - 1
194
+ ) # uncentered pixel coords
195
+ box_coords.clamp_(torch.zeros_like(img_bounds), img_bounds) # In place clamping
196
+
197
+ box_coords = box_coords.reshape(-1, 2, 2) # always 2 points
198
+ box_labels = box_labels.reshape(-1, 2)
199
+ return box_coords, box_labels
200
+
201
+
202
+ def sample_random_points_from_errors(gt_masks, pred_masks, num_pt=1):
203
+ """
204
+ Sample `num_pt` random points (along with their labels) independently from the error regions.
205
+
206
+ Inputs:
207
+ - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
208
+ - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
209
+ - num_pt: int, number of points to sample independently for each of the B error maps
210
+
211
+ Outputs:
212
+ - points: [B, num_pt, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
213
+ - labels: [B, num_pt], dtype=torch.int32, where 1 means positive clicks and 0 means
214
+ negative clicks
215
+ """
216
+ if pred_masks is None: # if pred_masks is not provided, treat it as empty
217
+ pred_masks = torch.zeros_like(gt_masks)
218
+ assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
219
+ assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
220
+ assert num_pt >= 0
221
+
222
+ B, _, H_im, W_im = gt_masks.shape
223
+ device = gt_masks.device
224
+
225
+ # false positive region, a new point sampled in this region should have
226
+ # negative label to correct the FP error
227
+ fp_masks = ~gt_masks & pred_masks
228
+ # false negative region, a new point sampled in this region should have
229
+ # positive label to correct the FN error
230
+ fn_masks = gt_masks & ~pred_masks
231
+ # whether the prediction completely match the ground-truth on each mask
232
+ all_correct = torch.all((gt_masks == pred_masks).flatten(2), dim=2)
233
+ all_correct = all_correct[..., None, None]
234
+
235
+ # channel 0 is FP map, while channel 1 is FN map
236
+ pts_noise = torch.rand(B, num_pt, H_im, W_im, 2, device=device)
237
+ # sample a negative new click from FP region or a positive new click
238
+ # from FN region, depend on where the maximum falls,
239
+ # and in case the predictions are all correct (no FP or FN), we just
240
+ # sample a negative click from the background region
241
+ pts_noise[..., 0] *= fp_masks | (all_correct & ~gt_masks)
242
+ pts_noise[..., 1] *= fn_masks
243
+ pts_idx = pts_noise.flatten(2).argmax(dim=2)
244
+ labels = (pts_idx % 2).to(torch.int32)
245
+ pts_idx = pts_idx // 2
246
+ pts_x = pts_idx % W_im
247
+ pts_y = pts_idx // W_im
248
+ points = torch.stack([pts_x, pts_y], dim=2).to(torch.float)
249
+ return points, labels
250
+
251
+
252
+ def sample_one_point_from_error_center(gt_masks, pred_masks, padding=True):
253
+ """
254
+ Sample 1 random point (along with its label) from the center of each error region,
255
+ that is, the point with the largest distance to the boundary of each error region.
256
+ This is the RITM sampling method from https://github.com/saic-vul/ritm_interactive_segmentation/blob/master/isegm/inference/clicker.py
257
+
258
+ Inputs:
259
+ - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
260
+ - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
261
+ - padding: if True, pad with boundary of 1 px for distance transform
262
+
263
+ Outputs:
264
+ - points: [B, 1, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
265
+ - labels: [B, 1], dtype=torch.int32, where 1 means positive clicks and 0 means negative clicks
266
+ """
267
+ import cv2
268
+
269
+ if pred_masks is None:
270
+ pred_masks = torch.zeros_like(gt_masks)
271
+ assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
272
+ assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
273
+
274
+ B, _, _, W_im = gt_masks.shape
275
+ device = gt_masks.device
276
+
277
+ # false positive region, a new point sampled in this region should have
278
+ # negative label to correct the FP error
279
+ fp_masks = ~gt_masks & pred_masks
280
+ # false negative region, a new point sampled in this region should have
281
+ # positive label to correct the FN error
282
+ fn_masks = gt_masks & ~pred_masks
283
+
284
+ fp_masks = fp_masks.cpu().numpy()
285
+ fn_masks = fn_masks.cpu().numpy()
286
+ points = torch.zeros(B, 1, 2, dtype=torch.float)
287
+ labels = torch.ones(B, 1, dtype=torch.int32)
288
+ for b in range(B):
289
+ fn_mask = fn_masks[b, 0]
290
+ fp_mask = fp_masks[b, 0]
291
+ if padding:
292
+ fn_mask = np.pad(fn_mask, ((1, 1), (1, 1)), "constant")
293
+ fp_mask = np.pad(fp_mask, ((1, 1), (1, 1)), "constant")
294
+ # compute the distance of each point in FN/FP region to its boundary
295
+ fn_mask_dt = cv2.distanceTransform(fn_mask.astype(np.uint8), cv2.DIST_L2, 0)
296
+ fp_mask_dt = cv2.distanceTransform(fp_mask.astype(np.uint8), cv2.DIST_L2, 0)
297
+ if padding:
298
+ fn_mask_dt = fn_mask_dt[1:-1, 1:-1]
299
+ fp_mask_dt = fp_mask_dt[1:-1, 1:-1]
300
+
301
+ # take the point in FN/FP region with the largest distance to its boundary
302
+ fn_mask_dt_flat = fn_mask_dt.reshape(-1)
303
+ fp_mask_dt_flat = fp_mask_dt.reshape(-1)
304
+ fn_argmax = np.argmax(fn_mask_dt_flat)
305
+ fp_argmax = np.argmax(fp_mask_dt_flat)
306
+ is_positive = fn_mask_dt_flat[fn_argmax] > fp_mask_dt_flat[fp_argmax]
307
+ pt_idx = fn_argmax if is_positive else fp_argmax
308
+ points[b, 0, 0] = pt_idx % W_im # x
309
+ points[b, 0, 1] = pt_idx // W_im # y
310
+ labels[b, 0] = int(is_positive)
311
+
312
+ points = points.to(device)
313
+ labels = labels.to(device)
314
+ return points, labels
315
+
316
+
317
+ def get_next_point(gt_masks, pred_masks, method):
318
+ if method == "uniform":
319
+ return sample_random_points_from_errors(gt_masks, pred_masks)
320
+ elif method == "center":
321
+ return sample_one_point_from_error_center(gt_masks, pred_masks)
322
+ else:
323
+ raise ValueError(f"unknown sampling method {method}")
sam2/sam2_hiera_b+.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ configs/sam2/sam2_hiera_b+.yaml
sam2/sam2_hiera_l.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ configs/sam2/sam2_hiera_l.yaml
sam2/sam2_hiera_s.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ configs/sam2/sam2_hiera_s.yaml
sam2/sam2_hiera_t.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ configs/sam2/sam2_hiera_t.yaml
sam2/sam2_image_predictor.py ADDED
@@ -0,0 +1,466 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import logging
8
+
9
+ from typing import List, Optional, Tuple, Union
10
+
11
+ import numpy as np
12
+ import torch
13
+ from PIL.Image import Image
14
+
15
+ from sam2.modeling.sam2_base import SAM2Base
16
+
17
+ from sam2.utils.transforms import SAM2Transforms
18
+
19
+
20
+ class SAM2ImagePredictor:
21
+ def __init__(
22
+ self,
23
+ sam_model: SAM2Base,
24
+ mask_threshold=0.0,
25
+ max_hole_area=0.0,
26
+ max_sprinkle_area=0.0,
27
+ **kwargs,
28
+ ) -> None:
29
+ """
30
+ Uses SAM-2 to calculate the image embedding for an image, and then
31
+ allow repeated, efficient mask prediction given prompts.
32
+
33
+ Arguments:
34
+ sam_model (Sam-2): The model to use for mask prediction.
35
+ mask_threshold (float): The threshold to use when converting mask logits
36
+ to binary masks. Masks are thresholded at 0 by default.
37
+ max_hole_area (int): If max_hole_area > 0, we fill small holes in up to
38
+ the maximum area of max_hole_area in low_res_masks.
39
+ max_sprinkle_area (int): If max_sprinkle_area > 0, we remove small sprinkles up to
40
+ the maximum area of max_sprinkle_area in low_res_masks.
41
+ """
42
+ super().__init__()
43
+ self.model = sam_model
44
+ self._transforms = SAM2Transforms(
45
+ resolution=self.model.image_size,
46
+ mask_threshold=mask_threshold,
47
+ max_hole_area=max_hole_area,
48
+ max_sprinkle_area=max_sprinkle_area,
49
+ )
50
+
51
+ # Predictor state
52
+ self._is_image_set = False
53
+ self._features = None
54
+ self._orig_hw = None
55
+ # Whether the predictor is set for single image or a batch of images
56
+ self._is_batch = False
57
+
58
+ # Predictor config
59
+ self.mask_threshold = mask_threshold
60
+
61
+ # Spatial dim for backbone feature maps
62
+ self._bb_feat_sizes = [
63
+ (256, 256),
64
+ (128, 128),
65
+ (64, 64),
66
+ ]
67
+
68
+ @classmethod
69
+ def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2ImagePredictor":
70
+ """
71
+ Load a pretrained model from the Hugging Face hub.
72
+
73
+ Arguments:
74
+ model_id (str): The Hugging Face repository ID.
75
+ **kwargs: Additional arguments to pass to the model constructor.
76
+
77
+ Returns:
78
+ (SAM2ImagePredictor): The loaded model.
79
+ """
80
+ from sam2.build_sam import build_sam2_hf
81
+
82
+ sam_model = build_sam2_hf(model_id, **kwargs)
83
+ return cls(sam_model, **kwargs)
84
+
85
+ @torch.no_grad()
86
+ def set_image(
87
+ self,
88
+ image: Union[np.ndarray, Image],
89
+ ) -> None:
90
+ """
91
+ Calculates the image embeddings for the provided image, allowing
92
+ masks to be predicted with the 'predict' method.
93
+
94
+ Arguments:
95
+ image (np.ndarray or PIL Image): The input image to embed in RGB format. The image should be in HWC format if np.ndarray, or WHC format if PIL Image
96
+ with pixel values in [0, 255].
97
+ image_format (str): The color format of the image, in ['RGB', 'BGR'].
98
+ """
99
+ self.reset_predictor()
100
+ # Transform the image to the form expected by the model
101
+ if isinstance(image, np.ndarray):
102
+ logging.info("For numpy array image, we assume (HxWxC) format")
103
+ self._orig_hw = [image.shape[:2]]
104
+ elif isinstance(image, Image):
105
+ w, h = image.size
106
+ self._orig_hw = [(h, w)]
107
+ else:
108
+ raise NotImplementedError("Image format not supported")
109
+
110
+ input_image = self._transforms(image)
111
+ input_image = input_image[None, ...].to(self.device)
112
+
113
+ assert (
114
+ len(input_image.shape) == 4 and input_image.shape[1] == 3
115
+ ), f"input_image must be of size 1x3xHxW, got {input_image.shape}"
116
+ logging.info("Computing image embeddings for the provided image...")
117
+ backbone_out = self.model.forward_image(input_image)
118
+ _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
119
+ # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
120
+ if self.model.directly_add_no_mem_embed:
121
+ vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
122
+
123
+ feats = [
124
+ feat.permute(1, 2, 0).view(1, -1, *feat_size)
125
+ for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
126
+ ][::-1]
127
+ self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
128
+ self._is_image_set = True
129
+ logging.info("Image embeddings computed.")
130
+
131
+ @torch.no_grad()
132
+ def set_image_batch(
133
+ self,
134
+ image_list: List[Union[np.ndarray]],
135
+ ) -> None:
136
+ """
137
+ Calculates the image embeddings for the provided image batch, allowing
138
+ masks to be predicted with the 'predict_batch' method.
139
+
140
+ Arguments:
141
+ image_list (List[np.ndarray]): The input images to embed in RGB format. The image should be in HWC format if np.ndarray
142
+ with pixel values in [0, 255].
143
+ """
144
+ self.reset_predictor()
145
+ assert isinstance(image_list, list)
146
+ self._orig_hw = []
147
+ for image in image_list:
148
+ assert isinstance(
149
+ image, np.ndarray
150
+ ), "Images are expected to be an np.ndarray in RGB format, and of shape HWC"
151
+ self._orig_hw.append(image.shape[:2])
152
+ # Transform the image to the form expected by the model
153
+ img_batch = self._transforms.forward_batch(image_list)
154
+ img_batch = img_batch.to(self.device)
155
+ batch_size = img_batch.shape[0]
156
+ assert (
157
+ len(img_batch.shape) == 4 and img_batch.shape[1] == 3
158
+ ), f"img_batch must be of size Bx3xHxW, got {img_batch.shape}"
159
+ logging.info("Computing image embeddings for the provided images...")
160
+ backbone_out = self.model.forward_image(img_batch)
161
+ _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
162
+ # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
163
+ if self.model.directly_add_no_mem_embed:
164
+ vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
165
+
166
+ feats = [
167
+ feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
168
+ for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
169
+ ][::-1]
170
+ self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
171
+ self._is_image_set = True
172
+ self._is_batch = True
173
+ logging.info("Image embeddings computed.")
174
+
175
+ def predict_batch(
176
+ self,
177
+ point_coords_batch: List[np.ndarray] = None,
178
+ point_labels_batch: List[np.ndarray] = None,
179
+ box_batch: List[np.ndarray] = None,
180
+ mask_input_batch: List[np.ndarray] = None,
181
+ multimask_output: bool = True,
182
+ return_logits: bool = False,
183
+ normalize_coords=True,
184
+ ) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]:
185
+ """This function is very similar to predict(...), however it is used for batched mode, when the model is expected to generate predictions on multiple images.
186
+ It returns a tuple of lists of masks, ious, and low_res_masks_logits.
187
+ """
188
+ assert self._is_batch, "This function should only be used when in batched mode"
189
+ if not self._is_image_set:
190
+ raise RuntimeError(
191
+ "An image must be set with .set_image_batch(...) before mask prediction."
192
+ )
193
+ num_images = len(self._features["image_embed"])
194
+ all_masks = []
195
+ all_ious = []
196
+ all_low_res_masks = []
197
+ for img_idx in range(num_images):
198
+ # Transform input prompts
199
+ point_coords = (
200
+ point_coords_batch[img_idx] if point_coords_batch is not None else None
201
+ )
202
+ point_labels = (
203
+ point_labels_batch[img_idx] if point_labels_batch is not None else None
204
+ )
205
+ box = box_batch[img_idx] if box_batch is not None else None
206
+ mask_input = (
207
+ mask_input_batch[img_idx] if mask_input_batch is not None else None
208
+ )
209
+ mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts(
210
+ point_coords,
211
+ point_labels,
212
+ box,
213
+ mask_input,
214
+ normalize_coords,
215
+ img_idx=img_idx,
216
+ )
217
+ masks, iou_predictions, low_res_masks = self._predict(
218
+ unnorm_coords,
219
+ labels,
220
+ unnorm_box,
221
+ mask_input,
222
+ multimask_output,
223
+ return_logits=return_logits,
224
+ img_idx=img_idx,
225
+ )
226
+ masks_np = masks.squeeze(0).float().detach().cpu().numpy()
227
+ iou_predictions_np = (
228
+ iou_predictions.squeeze(0).float().detach().cpu().numpy()
229
+ )
230
+ low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
231
+ all_masks.append(masks_np)
232
+ all_ious.append(iou_predictions_np)
233
+ all_low_res_masks.append(low_res_masks_np)
234
+
235
+ return all_masks, all_ious, all_low_res_masks
236
+
237
+ def predict(
238
+ self,
239
+ point_coords: Optional[np.ndarray] = None,
240
+ point_labels: Optional[np.ndarray] = None,
241
+ box: Optional[np.ndarray] = None,
242
+ mask_input: Optional[np.ndarray] = None,
243
+ multimask_output: bool = True,
244
+ return_logits: bool = False,
245
+ normalize_coords=True,
246
+ ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
247
+ """
248
+ Predict masks for the given input prompts, using the currently set image.
249
+
250
+ Arguments:
251
+ point_coords (np.ndarray or None): A Nx2 array of point prompts to the
252
+ model. Each point is in (X,Y) in pixels.
253
+ point_labels (np.ndarray or None): A length N array of labels for the
254
+ point prompts. 1 indicates a foreground point and 0 indicates a
255
+ background point.
256
+ box (np.ndarray or None): A length 4 array given a box prompt to the
257
+ model, in XYXY format.
258
+ mask_input (np.ndarray): A low resolution mask input to the model, typically
259
+ coming from a previous prediction iteration. Has form 1xHxW, where
260
+ for SAM, H=W=256.
261
+ multimask_output (bool): If true, the model will return three masks.
262
+ For ambiguous input prompts (such as a single click), this will often
263
+ produce better masks than a single prediction. If only a single
264
+ mask is needed, the model's predicted quality score can be used
265
+ to select the best mask. For non-ambiguous prompts, such as multiple
266
+ input prompts, multimask_output=False can give better results.
267
+ return_logits (bool): If true, returns un-thresholded masks logits
268
+ instead of a binary mask.
269
+ normalize_coords (bool): If true, the point coordinates will be normalized to the range [0,1] and point_coords is expected to be wrt. image dimensions.
270
+
271
+ Returns:
272
+ (np.ndarray): The output masks in CxHxW format, where C is the
273
+ number of masks, and (H, W) is the original image size.
274
+ (np.ndarray): An array of length C containing the model's
275
+ predictions for the quality of each mask.
276
+ (np.ndarray): An array of shape CxHxW, where C is the number
277
+ of masks and H=W=256. These low resolution logits can be passed to
278
+ a subsequent iteration as mask input.
279
+ """
280
+ if not self._is_image_set:
281
+ raise RuntimeError(
282
+ "An image must be set with .set_image(...) before mask prediction."
283
+ )
284
+
285
+ # Transform input prompts
286
+
287
+ mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts(
288
+ point_coords, point_labels, box, mask_input, normalize_coords
289
+ )
290
+
291
+ masks, iou_predictions, low_res_masks = self._predict(
292
+ unnorm_coords,
293
+ labels,
294
+ unnorm_box,
295
+ mask_input,
296
+ multimask_output,
297
+ return_logits=return_logits,
298
+ )
299
+
300
+ masks_np = masks.squeeze(0).float().detach().cpu().numpy()
301
+ iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy()
302
+ low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
303
+ return masks_np, iou_predictions_np, low_res_masks_np
304
+
305
+ def _prep_prompts(
306
+ self, point_coords, point_labels, box, mask_logits, normalize_coords, img_idx=-1
307
+ ):
308
+
309
+ unnorm_coords, labels, unnorm_box, mask_input = None, None, None, None
310
+ if point_coords is not None:
311
+ assert (
312
+ point_labels is not None
313
+ ), "point_labels must be supplied if point_coords is supplied."
314
+ point_coords = torch.as_tensor(
315
+ point_coords, dtype=torch.float, device=self.device
316
+ )
317
+ unnorm_coords = self._transforms.transform_coords(
318
+ point_coords, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]
319
+ )
320
+ labels = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
321
+ if len(unnorm_coords.shape) == 2:
322
+ unnorm_coords, labels = unnorm_coords[None, ...], labels[None, ...]
323
+ if box is not None:
324
+ box = torch.as_tensor(box, dtype=torch.float, device=self.device)
325
+ unnorm_box = self._transforms.transform_boxes(
326
+ box, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]
327
+ ) # Bx2x2
328
+ if mask_logits is not None:
329
+ mask_input = torch.as_tensor(
330
+ mask_logits, dtype=torch.float, device=self.device
331
+ )
332
+ if len(mask_input.shape) == 3:
333
+ mask_input = mask_input[None, :, :, :]
334
+ return mask_input, unnorm_coords, labels, unnorm_box
335
+
336
+ @torch.no_grad()
337
+ def _predict(
338
+ self,
339
+ point_coords: Optional[torch.Tensor],
340
+ point_labels: Optional[torch.Tensor],
341
+ boxes: Optional[torch.Tensor] = None,
342
+ mask_input: Optional[torch.Tensor] = None,
343
+ multimask_output: bool = True,
344
+ return_logits: bool = False,
345
+ img_idx: int = -1,
346
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
347
+ """
348
+ Predict masks for the given input prompts, using the currently set image.
349
+ Input prompts are batched torch tensors and are expected to already be
350
+ transformed to the input frame using SAM2Transforms.
351
+
352
+ Arguments:
353
+ point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
354
+ model. Each point is in (X,Y) in pixels.
355
+ point_labels (torch.Tensor or None): A BxN array of labels for the
356
+ point prompts. 1 indicates a foreground point and 0 indicates a
357
+ background point.
358
+ boxes (np.ndarray or None): A Bx4 array given a box prompt to the
359
+ model, in XYXY format.
360
+ mask_input (np.ndarray): A low resolution mask input to the model, typically
361
+ coming from a previous prediction iteration. Has form Bx1xHxW, where
362
+ for SAM, H=W=256. Masks returned by a previous iteration of the
363
+ predict method do not need further transformation.
364
+ multimask_output (bool): If true, the model will return three masks.
365
+ For ambiguous input prompts (such as a single click), this will often
366
+ produce better masks than a single prediction. If only a single
367
+ mask is needed, the model's predicted quality score can be used
368
+ to select the best mask. For non-ambiguous prompts, such as multiple
369
+ input prompts, multimask_output=False can give better results.
370
+ return_logits (bool): If true, returns un-thresholded masks logits
371
+ instead of a binary mask.
372
+
373
+ Returns:
374
+ (torch.Tensor): The output masks in BxCxHxW format, where C is the
375
+ number of masks, and (H, W) is the original image size.
376
+ (torch.Tensor): An array of shape BxC containing the model's
377
+ predictions for the quality of each mask.
378
+ (torch.Tensor): An array of shape BxCxHxW, where C is the number
379
+ of masks and H=W=256. These low res logits can be passed to
380
+ a subsequent iteration as mask input.
381
+ """
382
+ if not self._is_image_set:
383
+ raise RuntimeError(
384
+ "An image must be set with .set_image(...) before mask prediction."
385
+ )
386
+
387
+ if point_coords is not None:
388
+ concat_points = (point_coords, point_labels)
389
+ else:
390
+ concat_points = None
391
+
392
+ # Embed prompts
393
+ if boxes is not None:
394
+ box_coords = boxes.reshape(-1, 2, 2)
395
+ box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=boxes.device)
396
+ box_labels = box_labels.repeat(boxes.size(0), 1)
397
+ # we merge "boxes" and "points" into a single "concat_points" input (where
398
+ # boxes are added at the beginning) to sam_prompt_encoder
399
+ if concat_points is not None:
400
+ concat_coords = torch.cat([box_coords, concat_points[0]], dim=1)
401
+ concat_labels = torch.cat([box_labels, concat_points[1]], dim=1)
402
+ concat_points = (concat_coords, concat_labels)
403
+ else:
404
+ concat_points = (box_coords, box_labels)
405
+
406
+ sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
407
+ points=concat_points,
408
+ boxes=None,
409
+ masks=mask_input,
410
+ )
411
+
412
+ # Predict masks
413
+ batched_mode = (
414
+ concat_points is not None and concat_points[0].shape[0] > 1
415
+ ) # multi object prediction
416
+ high_res_features = [
417
+ feat_level[img_idx].unsqueeze(0)
418
+ for feat_level in self._features["high_res_feats"]
419
+ ]
420
+ low_res_masks, iou_predictions, _, _ = self.model.sam_mask_decoder(
421
+ image_embeddings=self._features["image_embed"][img_idx].unsqueeze(0),
422
+ image_pe=self.model.sam_prompt_encoder.get_dense_pe(),
423
+ sparse_prompt_embeddings=sparse_embeddings,
424
+ dense_prompt_embeddings=dense_embeddings,
425
+ multimask_output=multimask_output,
426
+ repeat_image=batched_mode,
427
+ high_res_features=high_res_features,
428
+ )
429
+
430
+ # Upscale the masks to the original image resolution
431
+ masks = self._transforms.postprocess_masks(
432
+ low_res_masks, self._orig_hw[img_idx]
433
+ )
434
+ low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0)
435
+ if not return_logits:
436
+ masks = masks > self.mask_threshold
437
+
438
+ return masks, iou_predictions, low_res_masks
439
+
440
+ def get_image_embedding(self) -> torch.Tensor:
441
+ """
442
+ Returns the image embeddings for the currently set image, with
443
+ shape 1xCxHxW, where C is the embedding dimension and (H,W) are
444
+ the embedding spatial dimension of SAM (typically C=256, H=W=64).
445
+ """
446
+ if not self._is_image_set:
447
+ raise RuntimeError(
448
+ "An image must be set with .set_image(...) to generate an embedding."
449
+ )
450
+ assert (
451
+ self._features is not None
452
+ ), "Features must exist if an image has been set."
453
+ return self._features["image_embed"]
454
+
455
+ @property
456
+ def device(self) -> torch.device:
457
+ return self.model.device
458
+
459
+ def reset_predictor(self) -> None:
460
+ """
461
+ Resets the image embeddings and other state variables.
462
+ """
463
+ self._is_image_set = False
464
+ self._features = None
465
+ self._orig_hw = None
466
+ self._is_batch = False
sam2/sam2_video_predictor.py ADDED
@@ -0,0 +1,1172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import warnings
8
+ from collections import OrderedDict
9
+
10
+ import torch
11
+
12
+ from tqdm import tqdm
13
+
14
+ from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base
15
+ from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames
16
+
17
+
18
+ class SAM2VideoPredictor(SAM2Base):
19
+ """The predictor class to handle user interactions and manage inference states."""
20
+
21
+ def __init__(
22
+ self,
23
+ fill_hole_area=0,
24
+ # whether to apply non-overlapping constraints on the output object masks
25
+ non_overlap_masks=False,
26
+ # whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks;
27
+ # note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True)
28
+ clear_non_cond_mem_around_input=False,
29
+ # whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True).
30
+ clear_non_cond_mem_for_multi_obj=False,
31
+ # if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click
32
+ # if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames
33
+ add_all_frames_to_correct_as_cond=False,
34
+ **kwargs,
35
+ ):
36
+ super().__init__(**kwargs)
37
+ self.fill_hole_area = fill_hole_area
38
+ self.non_overlap_masks = non_overlap_masks
39
+ self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
40
+ self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj
41
+ self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
42
+
43
+ @torch.inference_mode()
44
+ def init_state(
45
+ self,
46
+ video_path,
47
+ offload_video_to_cpu=False,
48
+ offload_state_to_cpu=False,
49
+ async_loading_frames=False,
50
+ ):
51
+ """Initialize an inference state."""
52
+ compute_device = self.device # device of the model
53
+ images, video_height, video_width = load_video_frames(
54
+ video_path=video_path,
55
+ image_size=self.image_size,
56
+ offload_video_to_cpu=offload_video_to_cpu,
57
+ async_loading_frames=async_loading_frames,
58
+ compute_device=compute_device,
59
+ )
60
+ inference_state = {}
61
+ inference_state["images"] = images
62
+ inference_state["num_frames"] = len(images)
63
+ # whether to offload the video frames to CPU memory
64
+ # turning on this option saves the GPU memory with only a very small overhead
65
+ inference_state["offload_video_to_cpu"] = offload_video_to_cpu
66
+ # whether to offload the inference state to CPU memory
67
+ # turning on this option saves the GPU memory at the cost of a lower tracking fps
68
+ # (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object
69
+ # and from 24 to 21 when tracking two objects)
70
+ inference_state["offload_state_to_cpu"] = offload_state_to_cpu
71
+ # the original video height and width, used for resizing final output scores
72
+ inference_state["video_height"] = video_height
73
+ inference_state["video_width"] = video_width
74
+ inference_state["device"] = compute_device
75
+ if offload_state_to_cpu:
76
+ inference_state["storage_device"] = torch.device("cpu")
77
+ else:
78
+ inference_state["storage_device"] = compute_device
79
+ # inputs on each frame
80
+ inference_state["point_inputs_per_obj"] = {}
81
+ inference_state["mask_inputs_per_obj"] = {}
82
+ # visual features on a small number of recently visited frames for quick interactions
83
+ inference_state["cached_features"] = {}
84
+ # values that don't change across frames (so we only need to hold one copy of them)
85
+ inference_state["constants"] = {}
86
+ # mapping between client-side object id and model-side object index
87
+ inference_state["obj_id_to_idx"] = OrderedDict()
88
+ inference_state["obj_idx_to_id"] = OrderedDict()
89
+ inference_state["obj_ids"] = []
90
+ # A storage to hold the model's tracking results and states on each frame
91
+ inference_state["output_dict"] = {
92
+ "cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
93
+ "non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
94
+ }
95
+ # Slice (view) of each object tracking results, sharing the same memory with "output_dict"
96
+ inference_state["output_dict_per_obj"] = {}
97
+ # A temporary storage to hold new outputs when user interact with a frame
98
+ # to add clicks or mask (it's merged into "output_dict" before propagation starts)
99
+ inference_state["temp_output_dict_per_obj"] = {}
100
+ # Frames that already holds consolidated outputs from click or mask inputs
101
+ # (we directly use their consolidated outputs during tracking)
102
+ inference_state["consolidated_frame_inds"] = {
103
+ "cond_frame_outputs": set(), # set containing frame indices
104
+ "non_cond_frame_outputs": set(), # set containing frame indices
105
+ }
106
+ # metadata for each tracking frame (e.g. which direction it's tracked)
107
+ inference_state["tracking_has_started"] = False
108
+ inference_state["frames_already_tracked"] = {}
109
+ # Warm up the visual backbone and cache the image feature on frame 0
110
+ self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
111
+ return inference_state
112
+
113
+ @classmethod
114
+ def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor":
115
+ """
116
+ Load a pretrained model from the Hugging Face hub.
117
+
118
+ Arguments:
119
+ model_id (str): The Hugging Face repository ID.
120
+ **kwargs: Additional arguments to pass to the model constructor.
121
+
122
+ Returns:
123
+ (SAM2VideoPredictor): The loaded model.
124
+ """
125
+ from sam2.build_sam import build_sam2_video_predictor_hf
126
+
127
+ sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
128
+ return sam_model
129
+
130
+ def _obj_id_to_idx(self, inference_state, obj_id):
131
+ """Map client-side object id to model-side object index."""
132
+ obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
133
+ if obj_idx is not None:
134
+ return obj_idx
135
+
136
+ # This is a new object id not sent to the server before. We only allow adding
137
+ # new objects *before* the tracking starts.
138
+ allow_new_object = not inference_state["tracking_has_started"]
139
+ if allow_new_object:
140
+ # get the next object slot
141
+ obj_idx = len(inference_state["obj_id_to_idx"])
142
+ inference_state["obj_id_to_idx"][obj_id] = obj_idx
143
+ inference_state["obj_idx_to_id"][obj_idx] = obj_id
144
+ inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
145
+ # set up input and output structures for this object
146
+ inference_state["point_inputs_per_obj"][obj_idx] = {}
147
+ inference_state["mask_inputs_per_obj"][obj_idx] = {}
148
+ inference_state["output_dict_per_obj"][obj_idx] = {
149
+ "cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
150
+ "non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
151
+ }
152
+ inference_state["temp_output_dict_per_obj"][obj_idx] = {
153
+ "cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
154
+ "non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
155
+ }
156
+ return obj_idx
157
+ else:
158
+ raise RuntimeError(
159
+ f"Cannot add new object id {obj_id} after tracking starts. "
160
+ f"All existing object ids: {inference_state['obj_ids']}. "
161
+ f"Please call 'reset_state' to restart from scratch."
162
+ )
163
+
164
+ def _obj_idx_to_id(self, inference_state, obj_idx):
165
+ """Map model-side object index to client-side object id."""
166
+ return inference_state["obj_idx_to_id"][obj_idx]
167
+
168
+ def _get_obj_num(self, inference_state):
169
+ """Get the total number of unique object ids received so far in this session."""
170
+ return len(inference_state["obj_idx_to_id"])
171
+
172
+ @torch.inference_mode()
173
+ def add_new_points_or_box(
174
+ self,
175
+ inference_state,
176
+ frame_idx,
177
+ obj_id,
178
+ points=None,
179
+ labels=None,
180
+ clear_old_points=True,
181
+ normalize_coords=True,
182
+ box=None,
183
+ ):
184
+ """Add new points to a frame."""
185
+ obj_idx = self._obj_id_to_idx(inference_state, obj_id)
186
+ point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
187
+ mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
188
+
189
+ if (points is not None) != (labels is not None):
190
+ raise ValueError("points and labels must be provided together")
191
+ if points is None and box is None:
192
+ raise ValueError("at least one of points or box must be provided as input")
193
+
194
+ if points is None:
195
+ points = torch.zeros(0, 2, dtype=torch.float32)
196
+ elif not isinstance(points, torch.Tensor):
197
+ points = torch.tensor(points, dtype=torch.float32)
198
+ if labels is None:
199
+ labels = torch.zeros(0, dtype=torch.int32)
200
+ elif not isinstance(labels, torch.Tensor):
201
+ labels = torch.tensor(labels, dtype=torch.int32)
202
+ if points.dim() == 2:
203
+ points = points.unsqueeze(0) # add batch dimension
204
+ if labels.dim() == 1:
205
+ labels = labels.unsqueeze(0) # add batch dimension
206
+
207
+ # If `box` is provided, we add it as the first two points with labels 2 and 3
208
+ # along with the user-provided points (consistent with how SAM 2 is trained).
209
+ if box is not None:
210
+ if not clear_old_points:
211
+ raise ValueError(
212
+ "cannot add box without clearing old points, since "
213
+ "box prompt must be provided before any point prompt "
214
+ "(please use clear_old_points=True instead)"
215
+ )
216
+ if inference_state["tracking_has_started"]:
217
+ warnings.warn(
218
+ "You are adding a box after tracking starts. SAM 2 may not always be "
219
+ "able to incorporate a box prompt for *refinement*. If you intend to "
220
+ "use box prompt as an *initial* input before tracking, please call "
221
+ "'reset_state' on the inference state to restart from scratch.",
222
+ category=UserWarning,
223
+ stacklevel=2,
224
+ )
225
+ if not isinstance(box, torch.Tensor):
226
+ box = torch.tensor(box, dtype=torch.float32, device=points.device)
227
+ box_coords = box.reshape(1, 2, 2)
228
+ box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device)
229
+ box_labels = box_labels.reshape(1, 2)
230
+ points = torch.cat([box_coords, points], dim=1)
231
+ labels = torch.cat([box_labels, labels], dim=1)
232
+
233
+ if normalize_coords:
234
+ video_H = inference_state["video_height"]
235
+ video_W = inference_state["video_width"]
236
+ points = points / torch.tensor([video_W, video_H]).to(points.device)
237
+ # scale the (normalized) coordinates by the model's internal image size
238
+ points = points * self.image_size
239
+ points = points.to(inference_state["device"])
240
+ labels = labels.to(inference_state["device"])
241
+
242
+ if not clear_old_points:
243
+ point_inputs = point_inputs_per_frame.get(frame_idx, None)
244
+ else:
245
+ point_inputs = None
246
+ point_inputs = concat_points(point_inputs, points, labels)
247
+
248
+ point_inputs_per_frame[frame_idx] = point_inputs
249
+ mask_inputs_per_frame.pop(frame_idx, None)
250
+ # If this frame hasn't been tracked before, we treat it as an initial conditioning
251
+ # frame, meaning that the inputs points are to generate segments on this frame without
252
+ # using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
253
+ # the input points will be used to correct the already tracked masks.
254
+ is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
255
+ # whether to track in reverse time order
256
+ if is_init_cond_frame:
257
+ reverse = False
258
+ else:
259
+ reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
260
+ obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
261
+ obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
262
+ # Add a frame to conditioning output if it's an initial conditioning frame or
263
+ # if the model sees all frames receiving clicks/mask as conditioning frames.
264
+ is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
265
+ storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
266
+
267
+ # Get any previously predicted mask logits on this object and feed it along with
268
+ # the new clicks into the SAM mask decoder.
269
+ prev_sam_mask_logits = None
270
+ # lookup temporary output dict first, which contains the most recent output
271
+ # (if not found, then lookup conditioning and non-conditioning frame output)
272
+ prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
273
+ if prev_out is None:
274
+ prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx)
275
+ if prev_out is None:
276
+ prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
277
+
278
+ if prev_out is not None and prev_out["pred_masks"] is not None:
279
+ device = inference_state["device"]
280
+ prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True)
281
+ # Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
282
+ prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)
283
+ current_out, _ = self._run_single_frame_inference(
284
+ inference_state=inference_state,
285
+ output_dict=obj_output_dict, # run on the slice of a single object
286
+ frame_idx=frame_idx,
287
+ batch_size=1, # run on the slice of a single object
288
+ is_init_cond_frame=is_init_cond_frame,
289
+ point_inputs=point_inputs,
290
+ mask_inputs=None,
291
+ reverse=reverse,
292
+ # Skip the memory encoder when adding clicks or mask. We execute the memory encoder
293
+ # at the beginning of `propagate_in_video` (after user finalize their clicks). This
294
+ # allows us to enforce non-overlapping constraints on all objects before encoding
295
+ # them into memory.
296
+ run_mem_encoder=False,
297
+ prev_sam_mask_logits=prev_sam_mask_logits,
298
+ )
299
+ # Add the output to the output dict (to be used as future memory)
300
+ obj_temp_output_dict[storage_key][frame_idx] = current_out
301
+
302
+ # Resize the output mask to the original video resolution
303
+ obj_ids = inference_state["obj_ids"]
304
+ consolidated_out = self._consolidate_temp_output_across_obj(
305
+ inference_state,
306
+ frame_idx,
307
+ is_cond=is_cond,
308
+ run_mem_encoder=False,
309
+ consolidate_at_video_res=True,
310
+ )
311
+ _, video_res_masks = self._get_orig_video_res_output(
312
+ inference_state, consolidated_out["pred_masks_video_res"]
313
+ )
314
+ return frame_idx, obj_ids, video_res_masks
315
+
316
+ def add_new_points(self, *args, **kwargs):
317
+ """Deprecated method. Please use `add_new_points_or_box` instead."""
318
+ return self.add_new_points_or_box(*args, **kwargs)
319
+
320
+ @torch.inference_mode()
321
+ def add_new_mask(
322
+ self,
323
+ inference_state,
324
+ frame_idx,
325
+ obj_id,
326
+ mask,
327
+ ):
328
+ """Add new mask to a frame."""
329
+ obj_idx = self._obj_id_to_idx(inference_state, obj_id)
330
+ point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
331
+ mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
332
+
333
+ if not isinstance(mask, torch.Tensor):
334
+ mask = torch.tensor(mask, dtype=torch.bool)
335
+ assert mask.dim() == 2
336
+ mask_H, mask_W = mask.shape
337
+ mask_inputs_orig = mask[None, None] # add batch and channel dimension
338
+ mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"])
339
+
340
+ # resize the mask if it doesn't match the model's image size
341
+ if mask_H != self.image_size or mask_W != self.image_size:
342
+ mask_inputs = torch.nn.functional.interpolate(
343
+ mask_inputs_orig,
344
+ size=(self.image_size, self.image_size),
345
+ align_corners=False,
346
+ mode="bilinear",
347
+ antialias=True, # use antialias for downsampling
348
+ )
349
+ mask_inputs = (mask_inputs >= 0.5).float()
350
+ else:
351
+ mask_inputs = mask_inputs_orig
352
+
353
+ mask_inputs_per_frame[frame_idx] = mask_inputs
354
+ point_inputs_per_frame.pop(frame_idx, None)
355
+ # If this frame hasn't been tracked before, we treat it as an initial conditioning
356
+ # frame, meaning that the inputs points are to generate segments on this frame without
357
+ # using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
358
+ # the input points will be used to correct the already tracked masks.
359
+ is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
360
+ # whether to track in reverse time order
361
+ if is_init_cond_frame:
362
+ reverse = False
363
+ else:
364
+ reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
365
+ obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
366
+ obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
367
+ # Add a frame to conditioning output if it's an initial conditioning frame or
368
+ # if the model sees all frames receiving clicks/mask as conditioning frames.
369
+ is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
370
+ storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
371
+
372
+ current_out, _ = self._run_single_frame_inference(
373
+ inference_state=inference_state,
374
+ output_dict=obj_output_dict, # run on the slice of a single object
375
+ frame_idx=frame_idx,
376
+ batch_size=1, # run on the slice of a single object
377
+ is_init_cond_frame=is_init_cond_frame,
378
+ point_inputs=None,
379
+ mask_inputs=mask_inputs,
380
+ reverse=reverse,
381
+ # Skip the memory encoder when adding clicks or mask. We execute the memory encoder
382
+ # at the beginning of `propagate_in_video` (after user finalize their clicks). This
383
+ # allows us to enforce non-overlapping constraints on all objects before encoding
384
+ # them into memory.
385
+ run_mem_encoder=False,
386
+ )
387
+ # Add the output to the output dict (to be used as future memory)
388
+ obj_temp_output_dict[storage_key][frame_idx] = current_out
389
+
390
+ # Resize the output mask to the original video resolution
391
+ obj_ids = inference_state["obj_ids"]
392
+ consolidated_out = self._consolidate_temp_output_across_obj(
393
+ inference_state,
394
+ frame_idx,
395
+ is_cond=is_cond,
396
+ run_mem_encoder=False,
397
+ consolidate_at_video_res=True,
398
+ )
399
+ _, video_res_masks = self._get_orig_video_res_output(
400
+ inference_state, consolidated_out["pred_masks_video_res"]
401
+ )
402
+ return frame_idx, obj_ids, video_res_masks
403
+
404
+ def _get_orig_video_res_output(self, inference_state, any_res_masks):
405
+ """
406
+ Resize the object scores to the original video resolution (video_res_masks)
407
+ and apply non-overlapping constraints for final output.
408
+ """
409
+ device = inference_state["device"]
410
+ video_H = inference_state["video_height"]
411
+ video_W = inference_state["video_width"]
412
+ any_res_masks = any_res_masks.to(device, non_blocking=True)
413
+ if any_res_masks.shape[-2:] == (video_H, video_W):
414
+ video_res_masks = any_res_masks
415
+ else:
416
+ video_res_masks = torch.nn.functional.interpolate(
417
+ any_res_masks,
418
+ size=(video_H, video_W),
419
+ mode="bilinear",
420
+ align_corners=False,
421
+ )
422
+ if self.non_overlap_masks:
423
+ video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
424
+ return any_res_masks, video_res_masks
425
+
426
+ def _consolidate_temp_output_across_obj(
427
+ self,
428
+ inference_state,
429
+ frame_idx,
430
+ is_cond,
431
+ run_mem_encoder,
432
+ consolidate_at_video_res=False,
433
+ ):
434
+ """
435
+ Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on
436
+ a frame into a single output for all objects, including
437
+ 1) fill any missing objects either from `output_dict_per_obj` (if they exist in
438
+ `output_dict_per_obj` for this frame) or leave them as placeholder values
439
+ (if they don't exist in `output_dict_per_obj` for this frame);
440
+ 2) if specified, rerun memory encoder after apply non-overlapping constraints
441
+ on the object scores.
442
+ """
443
+ batch_size = self._get_obj_num(inference_state)
444
+ storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
445
+ # Optionally, we allow consolidating the temporary outputs at the original
446
+ # video resolution (to provide a better editing experience for mask prompts).
447
+ if consolidate_at_video_res:
448
+ assert not run_mem_encoder, "memory encoder cannot run at video resolution"
449
+ consolidated_H = inference_state["video_height"]
450
+ consolidated_W = inference_state["video_width"]
451
+ consolidated_mask_key = "pred_masks_video_res"
452
+ else:
453
+ consolidated_H = consolidated_W = self.image_size // 4
454
+ consolidated_mask_key = "pred_masks"
455
+
456
+ # Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
457
+ # will be added when rerunning the memory encoder after applying non-overlapping
458
+ # constraints to object scores. Its "pred_masks" are prefilled with a large
459
+ # negative value (NO_OBJ_SCORE) to represent missing objects.
460
+ consolidated_out = {
461
+ "maskmem_features": None,
462
+ "maskmem_pos_enc": None,
463
+ consolidated_mask_key: torch.full(
464
+ size=(batch_size, 1, consolidated_H, consolidated_W),
465
+ fill_value=NO_OBJ_SCORE,
466
+ dtype=torch.float32,
467
+ device=inference_state["storage_device"],
468
+ ),
469
+ "obj_ptr": torch.full(
470
+ size=(batch_size, self.hidden_dim),
471
+ fill_value=NO_OBJ_SCORE,
472
+ dtype=torch.float32,
473
+ device=inference_state["device"],
474
+ ),
475
+ "object_score_logits": torch.full(
476
+ size=(batch_size, 1),
477
+ # default to 10.0 for object_score_logits, i.e. assuming the object is
478
+ # present as sigmoid(10)=1, same as in `predict_masks` of `MaskDecoder`
479
+ fill_value=10.0,
480
+ dtype=torch.float32,
481
+ device=inference_state["device"],
482
+ ),
483
+ }
484
+ empty_mask_ptr = None
485
+ for obj_idx in range(batch_size):
486
+ obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
487
+ obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
488
+ out = obj_temp_output_dict[storage_key].get(frame_idx, None)
489
+ # If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
490
+ # we fall back and look up its previous output in "output_dict_per_obj".
491
+ # We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
492
+ # "output_dict_per_obj" to find a previous output for this object.
493
+ if out is None:
494
+ out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None)
495
+ if out is None:
496
+ out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None)
497
+ # If the object doesn't appear in "output_dict_per_obj" either, we skip it
498
+ # and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
499
+ # placeholder above) and set its object pointer to be a dummy pointer.
500
+ if out is None:
501
+ # Fill in dummy object pointers for those objects without any inputs or
502
+ # tracking outcomes on this frame (only do it under `run_mem_encoder=True`,
503
+ # i.e. when we need to build the memory for tracking).
504
+ if run_mem_encoder:
505
+ if empty_mask_ptr is None:
506
+ empty_mask_ptr = self._get_empty_mask_ptr(
507
+ inference_state, frame_idx
508
+ )
509
+ # fill object pointer with a dummy pointer (based on an empty mask)
510
+ consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr
511
+ continue
512
+ # Add the temporary object output mask to consolidated output mask
513
+ obj_mask = out["pred_masks"]
514
+ consolidated_pred_masks = consolidated_out[consolidated_mask_key]
515
+ if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
516
+ consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask
517
+ else:
518
+ # Resize first if temporary object mask has a different resolution
519
+ resized_obj_mask = torch.nn.functional.interpolate(
520
+ obj_mask,
521
+ size=consolidated_pred_masks.shape[-2:],
522
+ mode="bilinear",
523
+ align_corners=False,
524
+ )
525
+ consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask
526
+ consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]
527
+ consolidated_out["object_score_logits"][obj_idx : obj_idx + 1] = out[
528
+ "object_score_logits"
529
+ ]
530
+
531
+ # Optionally, apply non-overlapping constraints on the consolidated scores
532
+ # and rerun the memory encoder
533
+ if run_mem_encoder:
534
+ device = inference_state["device"]
535
+ high_res_masks = torch.nn.functional.interpolate(
536
+ consolidated_out["pred_masks"].to(device, non_blocking=True),
537
+ size=(self.image_size, self.image_size),
538
+ mode="bilinear",
539
+ align_corners=False,
540
+ )
541
+ if self.non_overlap_masks_for_mem_enc:
542
+ high_res_masks = self._apply_non_overlapping_constraints(high_res_masks)
543
+ maskmem_features, maskmem_pos_enc = self._run_memory_encoder(
544
+ inference_state=inference_state,
545
+ frame_idx=frame_idx,
546
+ batch_size=batch_size,
547
+ high_res_masks=high_res_masks,
548
+ object_score_logits=consolidated_out["object_score_logits"],
549
+ is_mask_from_pts=True, # these frames are what the user interacted with
550
+ )
551
+ consolidated_out["maskmem_features"] = maskmem_features
552
+ consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc
553
+
554
+ return consolidated_out
555
+
556
+ def _get_empty_mask_ptr(self, inference_state, frame_idx):
557
+ """Get a dummy object pointer based on an empty mask on the current frame."""
558
+ # A dummy (empty) mask with a single object
559
+ batch_size = 1
560
+ mask_inputs = torch.zeros(
561
+ (batch_size, 1, self.image_size, self.image_size),
562
+ dtype=torch.float32,
563
+ device=inference_state["device"],
564
+ )
565
+
566
+ # Retrieve correct image features
567
+ (
568
+ _,
569
+ _,
570
+ current_vision_feats,
571
+ current_vision_pos_embeds,
572
+ feat_sizes,
573
+ ) = self._get_image_feature(inference_state, frame_idx, batch_size)
574
+
575
+ # Feed the empty mask and image feature above to get a dummy object pointer
576
+ current_out = self.track_step(
577
+ frame_idx=frame_idx,
578
+ is_init_cond_frame=True,
579
+ current_vision_feats=current_vision_feats,
580
+ current_vision_pos_embeds=current_vision_pos_embeds,
581
+ feat_sizes=feat_sizes,
582
+ point_inputs=None,
583
+ mask_inputs=mask_inputs,
584
+ output_dict={},
585
+ num_frames=inference_state["num_frames"],
586
+ track_in_reverse=False,
587
+ run_mem_encoder=False,
588
+ prev_sam_mask_logits=None,
589
+ )
590
+ return current_out["obj_ptr"]
591
+
592
+ @torch.inference_mode()
593
+ def propagate_in_video_preflight(self, inference_state):
594
+ """Prepare inference_state and consolidate temporary outputs before tracking."""
595
+ # Tracking has started and we don't allow adding new objects until session is reset.
596
+ inference_state["tracking_has_started"] = True
597
+ batch_size = self._get_obj_num(inference_state)
598
+
599
+ # Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
600
+ # add them into "output_dict".
601
+ temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
602
+ output_dict = inference_state["output_dict"]
603
+ # "consolidated_frame_inds" contains indices of those frames where consolidated
604
+ # temporary outputs have been added (either in this call or any previous calls
605
+ # to `propagate_in_video_preflight`).
606
+ consolidated_frame_inds = inference_state["consolidated_frame_inds"]
607
+ for is_cond in [False, True]:
608
+ # Separately consolidate conditioning and non-conditioning temp outputs
609
+ storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
610
+ # Find all the frames that contain temporary outputs for any objects
611
+ # (these should be the frames that have just received clicks for mask inputs
612
+ # via `add_new_points_or_box` or `add_new_mask`)
613
+ temp_frame_inds = set()
614
+ for obj_temp_output_dict in temp_output_dict_per_obj.values():
615
+ temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
616
+ consolidated_frame_inds[storage_key].update(temp_frame_inds)
617
+ # consolidate the temporary output across all objects on this frame
618
+ for frame_idx in temp_frame_inds:
619
+ consolidated_out = self._consolidate_temp_output_across_obj(
620
+ inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True
621
+ )
622
+ # merge them into "output_dict" and also create per-object slices
623
+ output_dict[storage_key][frame_idx] = consolidated_out
624
+ self._add_output_per_object(
625
+ inference_state, frame_idx, consolidated_out, storage_key
626
+ )
627
+ clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
628
+ self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
629
+ )
630
+ if clear_non_cond_mem:
631
+ # clear non-conditioning memory of the surrounding frames
632
+ self._clear_non_cond_mem_around_input(inference_state, frame_idx)
633
+
634
+ # clear temporary outputs in `temp_output_dict_per_obj`
635
+ for obj_temp_output_dict in temp_output_dict_per_obj.values():
636
+ obj_temp_output_dict[storage_key].clear()
637
+
638
+ # edge case: if an output is added to "cond_frame_outputs", we remove any prior
639
+ # output on the same frame in "non_cond_frame_outputs"
640
+ for frame_idx in output_dict["cond_frame_outputs"]:
641
+ output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
642
+ for obj_output_dict in inference_state["output_dict_per_obj"].values():
643
+ for frame_idx in obj_output_dict["cond_frame_outputs"]:
644
+ obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
645
+ for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
646
+ assert frame_idx in output_dict["cond_frame_outputs"]
647
+ consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
648
+
649
+ # Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames
650
+ # with either points or mask inputs (which should be true under a correct workflow).
651
+ all_consolidated_frame_inds = (
652
+ consolidated_frame_inds["cond_frame_outputs"]
653
+ | consolidated_frame_inds["non_cond_frame_outputs"]
654
+ )
655
+ input_frames_inds = set()
656
+ for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values():
657
+ input_frames_inds.update(point_inputs_per_frame.keys())
658
+ for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values():
659
+ input_frames_inds.update(mask_inputs_per_frame.keys())
660
+ assert all_consolidated_frame_inds == input_frames_inds
661
+
662
+ @torch.inference_mode()
663
+ def propagate_in_video(
664
+ self,
665
+ inference_state,
666
+ start_frame_idx=None,
667
+ max_frame_num_to_track=None,
668
+ reverse=False,
669
+ ):
670
+ """Propagate the input points across frames to track in the entire video."""
671
+ self.propagate_in_video_preflight(inference_state)
672
+
673
+ output_dict = inference_state["output_dict"]
674
+ consolidated_frame_inds = inference_state["consolidated_frame_inds"]
675
+ obj_ids = inference_state["obj_ids"]
676
+ num_frames = inference_state["num_frames"]
677
+ batch_size = self._get_obj_num(inference_state)
678
+ if len(output_dict["cond_frame_outputs"]) == 0:
679
+ raise RuntimeError("No points are provided; please add points first")
680
+ clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
681
+ self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
682
+ )
683
+
684
+ # set start index, end index, and processing order
685
+ if start_frame_idx is None:
686
+ # default: start from the earliest frame with input points
687
+ start_frame_idx = min(output_dict["cond_frame_outputs"])
688
+ if max_frame_num_to_track is None:
689
+ # default: track all the frames in the video
690
+ max_frame_num_to_track = num_frames
691
+ if reverse:
692
+ end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
693
+ if start_frame_idx > 0:
694
+ processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
695
+ else:
696
+ processing_order = [] # skip reverse tracking if starting from frame 0
697
+ else:
698
+ end_frame_idx = min(
699
+ start_frame_idx + max_frame_num_to_track, num_frames - 1
700
+ )
701
+ processing_order = range(start_frame_idx, end_frame_idx + 1)
702
+
703
+ for frame_idx in tqdm(processing_order, desc="propagate in video"):
704
+ # We skip those frames already in consolidated outputs (these are frames
705
+ # that received input clicks or mask). Note that we cannot directly run
706
+ # batched forward on them via `_run_single_frame_inference` because the
707
+ # number of clicks on each object might be different.
708
+ if frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
709
+ storage_key = "cond_frame_outputs"
710
+ current_out = output_dict[storage_key][frame_idx]
711
+ pred_masks = current_out["pred_masks"]
712
+ if clear_non_cond_mem:
713
+ # clear non-conditioning memory of the surrounding frames
714
+ self._clear_non_cond_mem_around_input(inference_state, frame_idx)
715
+ elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]:
716
+ storage_key = "non_cond_frame_outputs"
717
+ current_out = output_dict[storage_key][frame_idx]
718
+ pred_masks = current_out["pred_masks"]
719
+ else:
720
+ storage_key = "non_cond_frame_outputs"
721
+ current_out, pred_masks = self._run_single_frame_inference(
722
+ inference_state=inference_state,
723
+ output_dict=output_dict,
724
+ frame_idx=frame_idx,
725
+ batch_size=batch_size,
726
+ is_init_cond_frame=False,
727
+ point_inputs=None,
728
+ mask_inputs=None,
729
+ reverse=reverse,
730
+ run_mem_encoder=True,
731
+ )
732
+ output_dict[storage_key][frame_idx] = current_out
733
+ # Create slices of per-object outputs for subsequent interaction with each
734
+ # individual object after tracking.
735
+ self._add_output_per_object(
736
+ inference_state, frame_idx, current_out, storage_key
737
+ )
738
+ inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse}
739
+
740
+ # Resize the output mask to the original video resolution (we directly use
741
+ # the mask scores on GPU for output to avoid any CPU conversion in between)
742
+ _, video_res_masks = self._get_orig_video_res_output(
743
+ inference_state, pred_masks
744
+ )
745
+ yield frame_idx, obj_ids, video_res_masks
746
+
747
+ def _add_output_per_object(
748
+ self, inference_state, frame_idx, current_out, storage_key
749
+ ):
750
+ """
751
+ Split a multi-object output into per-object output slices and add them into
752
+ `output_dict_per_obj`. The resulting slices share the same tensor storage.
753
+ """
754
+ maskmem_features = current_out["maskmem_features"]
755
+ assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)
756
+
757
+ maskmem_pos_enc = current_out["maskmem_pos_enc"]
758
+ assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)
759
+
760
+ output_dict_per_obj = inference_state["output_dict_per_obj"]
761
+ for obj_idx, obj_output_dict in output_dict_per_obj.items():
762
+ obj_slice = slice(obj_idx, obj_idx + 1)
763
+ obj_out = {
764
+ "maskmem_features": None,
765
+ "maskmem_pos_enc": None,
766
+ "pred_masks": current_out["pred_masks"][obj_slice],
767
+ "obj_ptr": current_out["obj_ptr"][obj_slice],
768
+ "object_score_logits": current_out["object_score_logits"][obj_slice],
769
+ }
770
+ if maskmem_features is not None:
771
+ obj_out["maskmem_features"] = maskmem_features[obj_slice]
772
+ if maskmem_pos_enc is not None:
773
+ obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
774
+ obj_output_dict[storage_key][frame_idx] = obj_out
775
+
776
+ @torch.inference_mode()
777
+ def clear_all_prompts_in_frame(
778
+ self, inference_state, frame_idx, obj_id, need_output=True
779
+ ):
780
+ """Remove all input points or mask in a specific frame for a given object."""
781
+ obj_idx = self._obj_id_to_idx(inference_state, obj_id)
782
+
783
+ # Clear the conditioning information on the given frame
784
+ inference_state["point_inputs_per_obj"][obj_idx].pop(frame_idx, None)
785
+ inference_state["mask_inputs_per_obj"][obj_idx].pop(frame_idx, None)
786
+
787
+ temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
788
+ temp_output_dict_per_obj[obj_idx]["cond_frame_outputs"].pop(frame_idx, None)
789
+ temp_output_dict_per_obj[obj_idx]["non_cond_frame_outputs"].pop(frame_idx, None)
790
+
791
+ # Check and see if there are still any inputs left on this frame
792
+ batch_size = self._get_obj_num(inference_state)
793
+ frame_has_input = False
794
+ for obj_idx2 in range(batch_size):
795
+ if frame_idx in inference_state["point_inputs_per_obj"][obj_idx2]:
796
+ frame_has_input = True
797
+ break
798
+ if frame_idx in inference_state["mask_inputs_per_obj"][obj_idx2]:
799
+ frame_has_input = True
800
+ break
801
+
802
+ # If this frame has no remaining inputs for any objects, we further clear its
803
+ # conditioning frame status
804
+ if not frame_has_input:
805
+ output_dict = inference_state["output_dict"]
806
+ consolidated_frame_inds = inference_state["consolidated_frame_inds"]
807
+ consolidated_frame_inds["cond_frame_outputs"].discard(frame_idx)
808
+ consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
809
+ # Remove the frame's conditioning output (possibly downgrading it to non-conditioning)
810
+ out = output_dict["cond_frame_outputs"].pop(frame_idx, None)
811
+ if out is not None:
812
+ # The frame is not a conditioning frame anymore since it's not receiving inputs,
813
+ # so we "downgrade" its output (if exists) to a non-conditioning frame output.
814
+ output_dict["non_cond_frame_outputs"][frame_idx] = out
815
+ inference_state["frames_already_tracked"].pop(frame_idx, None)
816
+ # Similarly, do it for the sliced output on each object.
817
+ for obj_idx2 in range(batch_size):
818
+ obj_output_dict = inference_state["output_dict_per_obj"][obj_idx2]
819
+ obj_out = obj_output_dict["cond_frame_outputs"].pop(frame_idx, None)
820
+ if obj_out is not None:
821
+ obj_output_dict["non_cond_frame_outputs"][frame_idx] = obj_out
822
+
823
+ # If all the conditioning frames have been removed, we also clear the tracking outputs
824
+ if len(output_dict["cond_frame_outputs"]) == 0:
825
+ self._reset_tracking_results(inference_state)
826
+
827
+ if not need_output:
828
+ return
829
+ # Finally, output updated masks per object (after removing the inputs above)
830
+ obj_ids = inference_state["obj_ids"]
831
+ is_cond = any(
832
+ frame_idx in obj_temp_output_dict["cond_frame_outputs"]
833
+ for obj_temp_output_dict in temp_output_dict_per_obj.values()
834
+ )
835
+ consolidated_out = self._consolidate_temp_output_across_obj(
836
+ inference_state,
837
+ frame_idx,
838
+ is_cond=is_cond,
839
+ run_mem_encoder=False,
840
+ consolidate_at_video_res=True,
841
+ )
842
+ _, video_res_masks = self._get_orig_video_res_output(
843
+ inference_state, consolidated_out["pred_masks_video_res"]
844
+ )
845
+ return frame_idx, obj_ids, video_res_masks
846
+
847
+ @torch.inference_mode()
848
+ def reset_state(self, inference_state):
849
+ """Remove all input points or mask in all frames throughout the video."""
850
+ self._reset_tracking_results(inference_state)
851
+ # Remove all object ids
852
+ inference_state["obj_id_to_idx"].clear()
853
+ inference_state["obj_idx_to_id"].clear()
854
+ inference_state["obj_ids"].clear()
855
+ inference_state["point_inputs_per_obj"].clear()
856
+ inference_state["mask_inputs_per_obj"].clear()
857
+ inference_state["output_dict_per_obj"].clear()
858
+ inference_state["temp_output_dict_per_obj"].clear()
859
+
860
+ def _reset_tracking_results(self, inference_state):
861
+ """Reset all tracking inputs and results across the videos."""
862
+ for v in inference_state["point_inputs_per_obj"].values():
863
+ v.clear()
864
+ for v in inference_state["mask_inputs_per_obj"].values():
865
+ v.clear()
866
+ for v in inference_state["output_dict_per_obj"].values():
867
+ v["cond_frame_outputs"].clear()
868
+ v["non_cond_frame_outputs"].clear()
869
+ for v in inference_state["temp_output_dict_per_obj"].values():
870
+ v["cond_frame_outputs"].clear()
871
+ v["non_cond_frame_outputs"].clear()
872
+ inference_state["output_dict"]["cond_frame_outputs"].clear()
873
+ inference_state["output_dict"]["non_cond_frame_outputs"].clear()
874
+ inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear()
875
+ inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear()
876
+ inference_state["tracking_has_started"] = False
877
+ inference_state["frames_already_tracked"].clear()
878
+
879
+ def _get_image_feature(self, inference_state, frame_idx, batch_size):
880
+ """Compute the image features on a given frame."""
881
+ # Look up in the cache first
882
+ image, backbone_out = inference_state["cached_features"].get(
883
+ frame_idx, (None, None)
884
+ )
885
+ if backbone_out is None:
886
+ # Cache miss -- we will run inference on a single image
887
+ device = inference_state["device"]
888
+ image = inference_state["images"][frame_idx].to(device).float().unsqueeze(0)
889
+ backbone_out = self.forward_image(image)
890
+ # Cache the most recent frame's feature (for repeated interactions with
891
+ # a frame; we can use an LRU cache for more frames in the future).
892
+ inference_state["cached_features"] = {frame_idx: (image, backbone_out)}
893
+
894
+ # expand the features to have the same dimension as the number of objects
895
+ expanded_image = image.expand(batch_size, -1, -1, -1)
896
+ expanded_backbone_out = {
897
+ "backbone_fpn": backbone_out["backbone_fpn"].copy(),
898
+ "vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
899
+ }
900
+ for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]):
901
+ expanded_backbone_out["backbone_fpn"][i] = feat.expand(
902
+ batch_size, -1, -1, -1
903
+ )
904
+ for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]):
905
+ pos = pos.expand(batch_size, -1, -1, -1)
906
+ expanded_backbone_out["vision_pos_enc"][i] = pos
907
+
908
+ features = self._prepare_backbone_features(expanded_backbone_out)
909
+ features = (expanded_image,) + features
910
+ return features
911
+
912
+ def _run_single_frame_inference(
913
+ self,
914
+ inference_state,
915
+ output_dict,
916
+ frame_idx,
917
+ batch_size,
918
+ is_init_cond_frame,
919
+ point_inputs,
920
+ mask_inputs,
921
+ reverse,
922
+ run_mem_encoder,
923
+ prev_sam_mask_logits=None,
924
+ ):
925
+ """Run tracking on a single frame based on current inputs and previous memory."""
926
+ # Retrieve correct image features
927
+ (
928
+ _,
929
+ _,
930
+ current_vision_feats,
931
+ current_vision_pos_embeds,
932
+ feat_sizes,
933
+ ) = self._get_image_feature(inference_state, frame_idx, batch_size)
934
+
935
+ # point and mask should not appear as input simultaneously on the same frame
936
+ assert point_inputs is None or mask_inputs is None
937
+ current_out = self.track_step(
938
+ frame_idx=frame_idx,
939
+ is_init_cond_frame=is_init_cond_frame,
940
+ current_vision_feats=current_vision_feats,
941
+ current_vision_pos_embeds=current_vision_pos_embeds,
942
+ feat_sizes=feat_sizes,
943
+ point_inputs=point_inputs,
944
+ mask_inputs=mask_inputs,
945
+ output_dict=output_dict,
946
+ num_frames=inference_state["num_frames"],
947
+ track_in_reverse=reverse,
948
+ run_mem_encoder=run_mem_encoder,
949
+ prev_sam_mask_logits=prev_sam_mask_logits,
950
+ )
951
+
952
+ # optionally offload the output to CPU memory to save GPU space
953
+ storage_device = inference_state["storage_device"]
954
+ maskmem_features = current_out["maskmem_features"]
955
+ if maskmem_features is not None:
956
+ maskmem_features = maskmem_features.to(torch.bfloat16)
957
+ maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
958
+ pred_masks_gpu = current_out["pred_masks"]
959
+ # potentially fill holes in the predicted masks
960
+ if self.fill_hole_area > 0:
961
+ pred_masks_gpu = fill_holes_in_mask_scores(
962
+ pred_masks_gpu, self.fill_hole_area
963
+ )
964
+ pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
965
+ # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
966
+ maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out)
967
+ # object pointer is a small tensor, so we always keep it on GPU memory for fast access
968
+ obj_ptr = current_out["obj_ptr"]
969
+ object_score_logits = current_out["object_score_logits"]
970
+ # make a compact version of this frame's output to reduce the state size
971
+ compact_current_out = {
972
+ "maskmem_features": maskmem_features,
973
+ "maskmem_pos_enc": maskmem_pos_enc,
974
+ "pred_masks": pred_masks,
975
+ "obj_ptr": obj_ptr,
976
+ "object_score_logits": object_score_logits,
977
+ }
978
+ return compact_current_out, pred_masks_gpu
979
+
980
+ def _run_memory_encoder(
981
+ self,
982
+ inference_state,
983
+ frame_idx,
984
+ batch_size,
985
+ high_res_masks,
986
+ object_score_logits,
987
+ is_mask_from_pts,
988
+ ):
989
+ """
990
+ Run the memory encoder on `high_res_masks`. This is usually after applying
991
+ non-overlapping constraints to object scores. Since their scores changed, their
992
+ memory also need to be computed again with the memory encoder.
993
+ """
994
+ # Retrieve correct image features
995
+ _, _, current_vision_feats, _, feat_sizes = self._get_image_feature(
996
+ inference_state, frame_idx, batch_size
997
+ )
998
+ maskmem_features, maskmem_pos_enc = self._encode_new_memory(
999
+ current_vision_feats=current_vision_feats,
1000
+ feat_sizes=feat_sizes,
1001
+ pred_masks_high_res=high_res_masks,
1002
+ object_score_logits=object_score_logits,
1003
+ is_mask_from_pts=is_mask_from_pts,
1004
+ )
1005
+
1006
+ # optionally offload the output to CPU memory to save GPU space
1007
+ storage_device = inference_state["storage_device"]
1008
+ maskmem_features = maskmem_features.to(torch.bfloat16)
1009
+ maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
1010
+ # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
1011
+ maskmem_pos_enc = self._get_maskmem_pos_enc(
1012
+ inference_state, {"maskmem_pos_enc": maskmem_pos_enc}
1013
+ )
1014
+ return maskmem_features, maskmem_pos_enc
1015
+
1016
+ def _get_maskmem_pos_enc(self, inference_state, current_out):
1017
+ """
1018
+ `maskmem_pos_enc` is the same across frames and objects, so we cache it as
1019
+ a constant in the inference session to reduce session storage size.
1020
+ """
1021
+ model_constants = inference_state["constants"]
1022
+ # "out_maskmem_pos_enc" should be either a list of tensors or None
1023
+ out_maskmem_pos_enc = current_out["maskmem_pos_enc"]
1024
+ if out_maskmem_pos_enc is not None:
1025
+ if "maskmem_pos_enc" not in model_constants:
1026
+ assert isinstance(out_maskmem_pos_enc, list)
1027
+ # only take the slice for one object, since it's same across objects
1028
+ maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
1029
+ model_constants["maskmem_pos_enc"] = maskmem_pos_enc
1030
+ else:
1031
+ maskmem_pos_enc = model_constants["maskmem_pos_enc"]
1032
+ # expand the cached maskmem_pos_enc to the actual batch size
1033
+ batch_size = out_maskmem_pos_enc[0].size(0)
1034
+ expanded_maskmem_pos_enc = [
1035
+ x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc
1036
+ ]
1037
+ else:
1038
+ expanded_maskmem_pos_enc = None
1039
+ return expanded_maskmem_pos_enc
1040
+
1041
+ @torch.inference_mode()
1042
+ def remove_object(self, inference_state, obj_id, strict=False, need_output=True):
1043
+ """
1044
+ Remove an object id from the tracking state. If strict is True, we check whether
1045
+ the object id actually exists and raise an error if it doesn't exist.
1046
+ """
1047
+ old_obj_idx_to_rm = inference_state["obj_id_to_idx"].get(obj_id, None)
1048
+ updated_frames = []
1049
+ # Check whether this object_id to remove actually exists and possibly raise an error.
1050
+ if old_obj_idx_to_rm is None:
1051
+ if not strict:
1052
+ return inference_state["obj_ids"], updated_frames
1053
+ raise RuntimeError(
1054
+ f"Cannot remove object id {obj_id} as it doesn't exist. "
1055
+ f"All existing object ids: {inference_state['obj_ids']}."
1056
+ )
1057
+
1058
+ # If this is the only remaining object id, we simply reset the state.
1059
+ if len(inference_state["obj_id_to_idx"]) == 1:
1060
+ self.reset_state(inference_state)
1061
+ return inference_state["obj_ids"], updated_frames
1062
+
1063
+ # There are still remaining objects after removing this object id. In this case,
1064
+ # we need to delete the object storage from inference state tensors.
1065
+ # Step 0: clear the input on those frames where this object id has point or mask input
1066
+ # (note that this step is required as it might downgrade conditioning frames to
1067
+ # non-conditioning ones)
1068
+ obj_input_frames_inds = set()
1069
+ obj_input_frames_inds.update(
1070
+ inference_state["point_inputs_per_obj"][old_obj_idx_to_rm]
1071
+ )
1072
+ obj_input_frames_inds.update(
1073
+ inference_state["mask_inputs_per_obj"][old_obj_idx_to_rm]
1074
+ )
1075
+ for frame_idx in obj_input_frames_inds:
1076
+ self.clear_all_prompts_in_frame(
1077
+ inference_state, frame_idx, obj_id, need_output=False
1078
+ )
1079
+
1080
+ # Step 1: Update the object id mapping (note that it must be done after Step 0,
1081
+ # since Step 0 still requires the old object id mappings in inference_state)
1082
+ old_obj_ids = inference_state["obj_ids"]
1083
+ old_obj_inds = list(range(len(old_obj_ids)))
1084
+ remain_old_obj_inds = old_obj_inds.copy()
1085
+ remain_old_obj_inds.remove(old_obj_idx_to_rm)
1086
+ new_obj_ids = [old_obj_ids[old_idx] for old_idx in remain_old_obj_inds]
1087
+ new_obj_inds = list(range(len(new_obj_ids)))
1088
+ # build new mappings
1089
+ old_idx_to_new_idx = dict(zip(remain_old_obj_inds, new_obj_inds))
1090
+ inference_state["obj_id_to_idx"] = dict(zip(new_obj_ids, new_obj_inds))
1091
+ inference_state["obj_idx_to_id"] = dict(zip(new_obj_inds, new_obj_ids))
1092
+ inference_state["obj_ids"] = new_obj_ids
1093
+
1094
+ # Step 2: For per-object tensor storage, we shift their obj_idx in the dict keys.
1095
+ # (note that "consolidated_frame_inds" doesn't need to be updated in this step as
1096
+ # it's already handled in Step 0)
1097
+ def _map_keys(container):
1098
+ new_kvs = []
1099
+ for k in old_obj_inds:
1100
+ v = container.pop(k)
1101
+ if k in old_idx_to_new_idx:
1102
+ new_kvs.append((old_idx_to_new_idx[k], v))
1103
+ container.update(new_kvs)
1104
+
1105
+ _map_keys(inference_state["point_inputs_per_obj"])
1106
+ _map_keys(inference_state["mask_inputs_per_obj"])
1107
+ _map_keys(inference_state["output_dict_per_obj"])
1108
+ _map_keys(inference_state["temp_output_dict_per_obj"])
1109
+
1110
+ # Step 3: For packed tensor storage, we index the remaining ids and rebuild the per-object slices.
1111
+ def _slice_state(output_dict, storage_key):
1112
+ for frame_idx, out in output_dict[storage_key].items():
1113
+ out["maskmem_features"] = out["maskmem_features"][remain_old_obj_inds]
1114
+ out["maskmem_pos_enc"] = [
1115
+ x[remain_old_obj_inds] for x in out["maskmem_pos_enc"]
1116
+ ]
1117
+ # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
1118
+ out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(inference_state, out)
1119
+ out["pred_masks"] = out["pred_masks"][remain_old_obj_inds]
1120
+ out["obj_ptr"] = out["obj_ptr"][remain_old_obj_inds]
1121
+ out["object_score_logits"] = out["object_score_logits"][
1122
+ remain_old_obj_inds
1123
+ ]
1124
+ # also update the per-object slices
1125
+ self._add_output_per_object(
1126
+ inference_state, frame_idx, out, storage_key
1127
+ )
1128
+
1129
+ _slice_state(inference_state["output_dict"], "cond_frame_outputs")
1130
+ _slice_state(inference_state["output_dict"], "non_cond_frame_outputs")
1131
+
1132
+ # Step 4: Further collect the outputs on those frames in `obj_input_frames_inds`, which
1133
+ # could show an updated mask for objects previously occluded by the object being removed
1134
+ if need_output:
1135
+ temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
1136
+ for frame_idx in obj_input_frames_inds:
1137
+ is_cond = any(
1138
+ frame_idx in obj_temp_output_dict["cond_frame_outputs"]
1139
+ for obj_temp_output_dict in temp_output_dict_per_obj.values()
1140
+ )
1141
+ consolidated_out = self._consolidate_temp_output_across_obj(
1142
+ inference_state,
1143
+ frame_idx,
1144
+ is_cond=is_cond,
1145
+ run_mem_encoder=False,
1146
+ consolidate_at_video_res=True,
1147
+ )
1148
+ _, video_res_masks = self._get_orig_video_res_output(
1149
+ inference_state, consolidated_out["pred_masks_video_res"]
1150
+ )
1151
+ updated_frames.append((frame_idx, video_res_masks))
1152
+
1153
+ return inference_state["obj_ids"], updated_frames
1154
+
1155
+ def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
1156
+ """
1157
+ Remove the non-conditioning memory around the input frame. When users provide
1158
+ correction clicks, the surrounding frames' non-conditioning memories can still
1159
+ contain outdated object appearance information and could confuse the model.
1160
+
1161
+ This method clears those non-conditioning memories surrounding the interacted
1162
+ frame to avoid giving the model both old and new information about the object.
1163
+ """
1164
+ r = self.memory_temporal_stride_for_eval
1165
+ frame_idx_begin = frame_idx - r * self.num_maskmem
1166
+ frame_idx_end = frame_idx + r * self.num_maskmem
1167
+ output_dict = inference_state["output_dict"]
1168
+ non_cond_frame_outputs = output_dict["non_cond_frame_outputs"]
1169
+ for t in range(frame_idx_begin, frame_idx_end + 1):
1170
+ non_cond_frame_outputs.pop(t, None)
1171
+ for obj_output_dict in inference_state["output_dict_per_obj"].values():
1172
+ obj_output_dict["non_cond_frame_outputs"].pop(t, None)