Spaces:
Runtime error
Runtime error
import cv2 | |
import datetime | |
import imutils | |
import numpy as np | |
from centroidtracker import CentroidTracker | |
import pandas as pd | |
import torch | |
import streamlit as st | |
import mediapipe as mp | |
import cv2 as cv | |
import numpy as np | |
import tempfile | |
import time | |
from PIL import Image | |
import pandas as pd | |
import torch | |
import base64 | |
import streamlit.components.v1 as components | |
import csv | |
import pickle | |
from pathlib import Path | |
import streamlit_authenticator as stauth | |
import os | |
import csv | |
# x-x-x-x-x-x-x-x-x-x-x-x-x-x LOGIN FORM x-x-x-x-x-x-x-x-x | |
import streamlit as st | |
import pandas as pd | |
import hashlib | |
import sqlite3 | |
# | |
import pickle | |
from pathlib import Path | |
import streamlit_authenticator as stauth | |
# print("Done !!!") | |
data = ["student Count",'Date','Id','Mobile','Watch'] | |
with open('final.csv', 'w') as file: | |
writer = csv.writer(file) | |
writer.writerow(data) | |
l1 = [] | |
l2 = [] | |
if st.button('signup'): | |
usernames = st.text_input('Username') | |
pwd = st.text_input('Password') | |
l1.append(usernames) | |
l2.append(pwd) | |
names = ["dmin", "ser"] | |
if st.button("signupsss"): | |
username =l1 | |
password =l2 | |
hashed_passwords =stauth.Hasher(password).generate() | |
file_path = Path(__file__).parent / "hashed_pw.pkl" | |
with file_path.open("wb") as file: | |
pickle.dump(hashed_passwords, file) | |
elif st.button('Logins'): | |
names = ['dmin', 'ser'] | |
username =l1 | |
file_path = Path(__file__).parent / 'hashed_pw.pkl' | |
with file_path.open('rb') as file: | |
hashed_passwords = pickle.load(file) | |
authenticator = stauth.Authenticate(names,username,hashed_passwords,'Cheating Detection','abcdefg',cookie_expiry_days=180) | |
name,authentication_status,username= authenticator.login('Login','main') | |
if authentication_status == False: | |
st.error('Username/Password is incorrect') | |
if authentication_status == None: | |
st.error('Please enter a username and password') | |
if authentication_status: | |
date_time = time.strftime("%b %d %Y %-I:%M %p") | |
date = date_time.split() | |
dates = date[0:3] | |
times = date[3:5] | |
# x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-xAPPLICACTION -x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x | |
def non_max_suppression_fast(boxes, overlapThresh): | |
try: | |
if len(boxes) == 0: | |
return [] | |
if boxes.dtype.kind == "i": | |
boxes = boxes.astype("float") | |
pick = [] | |
x1 = boxes[:, 0] | |
y1 = boxes[:, 1] | |
x2 = boxes[:, 2] | |
y2 = boxes[:, 3] | |
area = (x2 - x1 + 1) * (y2 - y1 + 1) | |
idxs = np.argsort(y2) | |
while len(idxs) > 0: | |
last = len(idxs) - 1 | |
i = idxs[last] | |
pick.append(i) | |
xx1 = np.maximum(x1[i], x1[idxs[:last]]) | |
yy1 = np.maximum(y1[i], y1[idxs[:last]]) | |
xx2 = np.minimum(x2[i], x2[idxs[:last]]) | |
yy2 = np.minimum(y2[i], y2[idxs[:last]]) | |
w = np.maximum(0, xx2 - xx1 + 1) | |
h = np.maximum(0, yy2 - yy1 + 1) | |
overlap = (w * h) / area[idxs[:last]] | |
idxs = np.delete(idxs, np.concatenate(([last], | |
np.where(overlap > overlapThresh)[0]))) | |
return boxes[pick].astype("int") | |
except Exception as e: | |
print("Exception occurred in non_max_suppression : {}".format(e)) | |
protopath = "MobileNetSSD_deploy.prototxt" | |
modelpath = "MobileNetSSD_deploy.caffemodel" | |
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath) | |
# Only enable it if you are using OpenVino environment | |
# detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE) | |
# detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) | |
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", | |
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable", | |
"dog", "horse", "motorbike", "person", "pottedplant", "sheep", | |
"sofa", "train", "tvmonitor"] | |
tracker = CentroidTracker(maxDisappeared=80, maxDistance=90) | |
st.markdown( | |
""" | |
<style> | |
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child{ | |
width: 350px | |
} | |
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child{ | |
width: 350px | |
margin-left: -350px | |
} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
hide_streamlit_style = """ | |
<style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
# Resize Images to fit Container | |
# Get Image Dimensions | |
def image_resize(image, width=None, height=None, inter=cv.INTER_AREA): | |
dim = None | |
(h,w) = image.shape[:2] | |
if width is None and height is None: | |
return image | |
if width is None: | |
r = width/float(w) | |
dim = (int(w*r),height) | |
else: | |
r = width/float(w) | |
dim = width, int(h*r) | |
# Resize image | |
resized = cv.resize(image,dim,interpolation=inter) | |
return resized | |
# About Page | |
authenticator.logout('Logout') | |
app_mode = st.sidebar.selectbox( | |
'App Mode', | |
['About','Application'] | |
) | |
if app_mode == 'About': | |
st.title('About Product And Team') | |
st.markdown(''' | |
Imran Bhai Project | |
''') | |
st.markdown( | |
""" | |
<style> | |
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child{ | |
width: 350px | |
} | |
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child{ | |
width: 350px | |
margin-left: -350px | |
} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
elif app_mode == 'Application': | |
st.set_option('deprecation.showfileUploaderEncoding', False) | |
use_webcam = st.button('Use Webcam') | |
# record = st.sidebar.checkbox("Record Video") | |
# if record: | |
# st.checkbox('Recording', True) | |
# drawing_spec = mp.solutions.drawing_utils.DrawingSpec(thickness=2, circle_radius=1) | |
# st.sidebar.markdown('---') | |
# ## Add Sidebar and Window style | |
# st.markdown( | |
# """ | |
# <style> | |
# [data-testid="stSidebar"][aria-expanded="true"] > div:first-child{ | |
# width: 350px | |
# } | |
# [data-testid="stSidebar"][aria-expanded="false"] > div:first-child{ | |
# width: 350px | |
# margin-left: -350px | |
# } | |
# </style> | |
# """, | |
# unsafe_allow_html=True, | |
# ) | |
# max_faces = st.sidebar.number_input('Maximum Number of Faces', value=5, min_value=1) | |
# st.sidebar.markdown('---') | |
# detection_confidence = st.sidebar.slider('Min Detection Confidence', min_value=0.0,max_value=1.0,value=0.5) | |
# tracking_confidence = st.sidebar.slider('Min Tracking Confidence', min_value=0.0,max_value=1.0,value=0.5) | |
# st.sidebar.markdown('---') | |
## Get Video | |
stframe = st.empty() | |
video_file_buffer = st.file_uploader("Upload a Video", type=['mp4', 'mov', 'avi', 'asf', 'm4v']) | |
temp_file = tempfile.NamedTemporaryFile(delete=False) | |
if not video_file_buffer: | |
if use_webcam: | |
video = cv.VideoCapture(0) | |
else: | |
try: | |
video = cv.VideoCapture(1) | |
temp_file.name = video | |
except: | |
pass | |
else: | |
temp_file.write(video_file_buffer.read()) | |
video = cv.VideoCapture(temp_file.name) | |
width = int(video.get(cv.CAP_PROP_FRAME_WIDTH)) | |
height = int(video.get(cv.CAP_PROP_FRAME_HEIGHT)) | |
fps_input = int(video.get(cv.CAP_PROP_FPS)) | |
## Recording | |
codec = cv.VideoWriter_fourcc('a','v','c','1') | |
out = cv.VideoWriter('output1.mp4', codec, fps_input, (width,height)) | |
st.sidebar.text('Input Video') | |
# st.sidebar.video(temp_file.name) | |
fps = 0 | |
i = 0 | |
drawing_spec = mp.solutions.drawing_utils.DrawingSpec(thickness=2, circle_radius=1) | |
kpil, kpil2, kpil3,kpil4,kpil5, kpil6 = st.columns(6) | |
with kpil: | |
st.markdown('**Frame Rate**') | |
kpil_text = st.markdown('0') | |
with kpil2: | |
st.markdown('**detection ID**') | |
kpil2_text = st.markdown('0') | |
with kpil3: | |
st.markdown('**Mobile**') | |
kpil3_text = st.markdown('0') | |
with kpil4: | |
st.markdown('**Watch**') | |
kpil4_text = st.markdown('0') | |
with kpil5: | |
st.markdown('**Count**') | |
kpil5_text = st.markdown('0') | |
with kpil6: | |
st.markdown('**Img Res**') | |
kpil6_text = st.markdown('0') | |
st.markdown('<hr/>', unsafe_allow_html=True) | |
# try: | |
def main(): | |
db = {} | |
# cap = cv2.VideoCapture('//home//anas//PersonTracking//WebUI//movement.mp4') | |
path='/usr/local/lib/python3.10/dist-packages/yolo0vs5/yolov5s-int8.tflite' | |
#count=0 | |
custom = 'yolov5s' | |
model = torch.hub.load('/usr/local/lib/python3.10/dist-packages/yolovs5', custom, path,source='local',force_reload=True) | |
b=model.names[0] = 'person' | |
mobile = model.names[67] = 'cell phone' | |
watch = model.names[75] = 'clock' | |
fps_start_time = datetime.datetime.now() | |
fps = 0 | |
size=416 | |
count=0 | |
counter=0 | |
color=(0,0,255) | |
cy1=250 | |
offset=6 | |
pt1 = (120, 100) | |
pt2 = (980, 1150) | |
color = (0, 255, 0) | |
pt3 = (283, 103) | |
pt4 = (1500, 1150) | |
cy2 = 500 | |
color = (0, 255, 0) | |
total_frames = 0 | |
prevTime = 0 | |
cur_frame = 0 | |
count=0 | |
counter=0 | |
fps_start_time = datetime.datetime.now() | |
fps = 0 | |
total_frames = 0 | |
lpc_count = 0 | |
opc_count = 0 | |
object_id_list = [] | |
# success = True | |
if st.button("Detect"): | |
try: | |
while video.isOpened(): | |
ret, frame = video.read() | |
frame = imutils.resize(frame, width=600) | |
total_frames = total_frames + 1 | |
(H, W) = frame.shape[:2] | |
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5) | |
detector.setInput(blob) | |
person_detections = detector.forward() | |
rects = [] | |
for i in np.arange(0, person_detections.shape[2]): | |
confidence = person_detections[0, 0, i, 2] | |
if confidence > 0.5: | |
idx = int(person_detections[0, 0, i, 1]) | |
if CLASSES[idx] != "person": | |
continue | |
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H]) | |
(startX, startY, endX, endY) = person_box.astype("int") | |
rects.append(person_box) | |
boundingboxes = np.array(rects) | |
boundingboxes = boundingboxes.astype(int) | |
rects = non_max_suppression_fast(boundingboxes, 0.3) | |
objects = tracker.update(rects) | |
for (objectId, bbox) in objects.items(): | |
x1, y1, x2, y2 = bbox | |
x1 = int(x1) | |
y1 = int(y1) | |
x2 = int(x2) | |
y2 = int(y2) | |
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2) | |
text = "ID: {}".format(objectId) | |
# print(text) | |
cv2.putText(frame, text, (x1, y1-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1) | |
if objectId not in object_id_list: | |
object_id_list.append(objectId) | |
fps_end_time = datetime.datetime.now() | |
time_diff = fps_end_time - fps_start_time | |
if time_diff.seconds == 0: | |
fps = 0.0 | |
else: | |
fps = (total_frames / time_diff.seconds) | |
fps_text = "FPS: {:.2f}".format(fps) | |
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1) | |
lpc_count = len(objects) | |
opc_count = len(object_id_list) | |
lpc_txt = "LPC: {}".format(lpc_count) | |
opc_txt = "OPC: {}".format(opc_count) | |
count += 1 | |
if count % 4 != 0: | |
continue | |
# frame=cv.resize(frame, (600,500)) | |
# cv2.line(frame, pt1, pt2,color,2) | |
# cv2.line(frame, pt3, pt4,color,2) | |
results = model(frame,size) | |
components = results.pandas().xyxy[0] | |
for index, row in results.pandas().xyxy[0].iterrows(): | |
x1 = int(row['xmin']) | |
y1 = int(row['ymin']) | |
x2 = int(row['xmax']) | |
y2 = int(row['ymax']) | |
confidence = (row['confidence']) | |
obj = (row['class']) | |
# min':x1,'ymin':y1,'xmax':x2,'ymax':y2,'confidence':confidence,'Object':obj} | |
# if lpc_txt is not None: | |
# try: | |
# db["student Count"] = [lpc_txt] | |
# except: | |
# db["student Count"] = ['N/A'] | |
if obj == 0: | |
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2) | |
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2) | |
rectcenter = int(rectx1),int(recty1) | |
cx = rectcenter[0] | |
cy = rectcenter[1] | |
cv2.circle(frame,(cx,cy),3,(0,255,0),-1) | |
cv2.putText(frame,str(b), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2) | |
db["student Count"] = [lpc_txt] | |
db['Date'] = [date_time] | |
db['id'] = ['N/A'] | |
db['Mobile']=['N/A'] | |
db['Watch'] = ['N/A'] | |
if cy<(cy1+offset) and cy>(cy1-offset): | |
DB = [] | |
counter+=1 | |
DB.append(counter) | |
ff = DB[-1] | |
fx = str(ff) | |
# cv2.line(frame, pt1, pt2,(0, 0, 255),2) | |
# if cy<(cy2+offset) and cy>(cy2-offset): | |
# cv2.line(frame, pt3, pt4,(0, 0, 255),2) | |
font = cv2.FONT_HERSHEY_TRIPLEX | |
cv2.putText(frame,fx,(50, 50),font, 1,(0, 0, 255),2,cv2.LINE_4) | |
cv2.putText(frame,"Movement",(70, 70),font, 1,(0, 0, 255),2,cv2.LINE_4) | |
kpil2_text.write(f"<h5 style='text-align: left; color:red;'>{text}</h5>", unsafe_allow_html=True) | |
db['id'] = [text] | |
if obj == 67: | |
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2) | |
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2) | |
rectcenter = int(rectx1),int(recty1) | |
cx = rectcenter[0] | |
cy = rectcenter[1] | |
cv2.circle(frame,(cx,cy),3,(0,255,0),-1) | |
cv2.putText(frame,str(mobile), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2) | |
cv2.putText(frame,'Mobile',(50, 50),cv2.FONT_HERSHEY_PLAIN, 1,(0, 0, 255),2,cv2.LINE_4) | |
kpil3_text.write(f"<h5 style='text-align: left; color:red;'>{mobile}{text}</h5>", unsafe_allow_html=True) | |
db['Mobile']=mobile+' '+text | |
if obj == 75: | |
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2) | |
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2) | |
rectcenter = int(rectx1),int(recty1) | |
cx = rectcenter[0] | |
cy = rectcenter[1] | |
cv2.circle(frame,(cx,cy),3,(0,255,0),-1) | |
cv2.putText(frame,str(watch), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2) | |
cv2.putText(frame,'Watch',(50, 50),cv2.FONT_HERSHEY_PLAIN, 1,(0, 0, 255),2,cv2.LINE_4) | |
kpil6_text.write(f"<h5 style='text-align: left; color:red;'>{watch}</h5>", unsafe_allow_html=True) | |
db['Watch']=watch | |
kpil_text.write(f"<h5 style='text-align: left; color:red;'>{int(fps)}</h5>", unsafe_allow_html=True) | |
kpil5_text.write(f"<h5 style='text-align: left; color:red;'>{lpc_txt}</h5>", unsafe_allow_html=True) | |
kpil6_text.write(f"<h5 style='text-align: left; color:red;'>{width*height}</h5>", | |
unsafe_allow_html=True) | |
frame = cv.resize(frame,(0,0), fx=0.8, fy=0.8) | |
frame = image_resize(image=frame, width=640) | |
stframe.image(frame,channels='BGR', use_column_width=True) | |
df = pd.DataFrame(db) | |
df.to_csv('final.csv',mode='a',header=False,index=False) | |
except: | |
pass | |
with open('final.csv') as f: | |
st.download_button(label = 'Download Cheating Report',data=f,file_name='data.csv') | |
os.remove("final.csv") | |
main() | |