Spaces:
Build error
Build error
IhebJettPilot
commited on
Commit
•
c293cf4
1
Parent(s):
49280c9
Upload 5 files
Browse files- app.py +385 -0
- decode.py +121 -0
- giga-tokens.txt +500 -0
- model.py +1001 -0
- requirements (1).txt +12 -0
app.py
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
#
|
3 |
+
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
4 |
+
#
|
5 |
+
# See LICENSE for clarification regarding multiple authors
|
6 |
+
#
|
7 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
+
# you may not use this file except in compliance with the License.
|
9 |
+
# You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing, software
|
14 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
+
# See the License for the specific language governing permissions and
|
17 |
+
# limitations under the License.
|
18 |
+
|
19 |
+
# References:
|
20 |
+
# https://gradio.app/docs/#dropdown
|
21 |
+
|
22 |
+
import logging
|
23 |
+
import os
|
24 |
+
import tempfile
|
25 |
+
import time
|
26 |
+
from datetime import datetime
|
27 |
+
|
28 |
+
import gradio as gr
|
29 |
+
import torch
|
30 |
+
import torchaudio
|
31 |
+
import urllib.request
|
32 |
+
|
33 |
+
|
34 |
+
from examples import examples
|
35 |
+
from model import decode, get_pretrained_model, language_to_models, sample_rate
|
36 |
+
|
37 |
+
languages = list(language_to_models.keys())
|
38 |
+
|
39 |
+
|
40 |
+
def convert_to_wav(in_filename: str) -> str:
|
41 |
+
"""Convert the input audio file to a wave file"""
|
42 |
+
out_filename = in_filename + ".wav"
|
43 |
+
logging.info(f"Converting '{in_filename}' to '{out_filename}'")
|
44 |
+
_ = os.system(f"ffmpeg -hide_banner -i '{in_filename}' -ar 16000 '{out_filename}'")
|
45 |
+
_ = os.system(
|
46 |
+
f"ffmpeg -hide_banner -loglevel error -i '{in_filename}' -ar 16000 '{out_filename}.flac'"
|
47 |
+
)
|
48 |
+
|
49 |
+
return out_filename
|
50 |
+
|
51 |
+
|
52 |
+
def build_html_output(s: str, style: str = "result_item_success"):
|
53 |
+
return f"""
|
54 |
+
<div class='result'>
|
55 |
+
<div class='result_item {style}'>
|
56 |
+
{s}
|
57 |
+
</div>
|
58 |
+
</div>
|
59 |
+
"""
|
60 |
+
|
61 |
+
def process_url(
|
62 |
+
language: str,
|
63 |
+
repo_id: str,
|
64 |
+
decoding_method: str,
|
65 |
+
num_active_paths: int,
|
66 |
+
url: str,
|
67 |
+
):
|
68 |
+
logging.info(f"Processing URL: {url}")
|
69 |
+
with tempfile.NamedTemporaryFile() as f:
|
70 |
+
try:
|
71 |
+
urllib.request.urlretrieve(url, f.name)
|
72 |
+
|
73 |
+
return process(
|
74 |
+
in_filename=f.name,
|
75 |
+
language=language,
|
76 |
+
repo_id=repo_id,
|
77 |
+
decoding_method=decoding_method,
|
78 |
+
num_active_paths=num_active_paths,
|
79 |
+
)
|
80 |
+
except Exception as e:
|
81 |
+
logging.info(str(e))
|
82 |
+
return "", build_html_output(str(e), "result_item_error")
|
83 |
+
|
84 |
+
def process_uploaded_file(
|
85 |
+
language: str,
|
86 |
+
repo_id: str,
|
87 |
+
decoding_method: str,
|
88 |
+
num_active_paths: int,
|
89 |
+
in_filename: str,
|
90 |
+
):
|
91 |
+
if in_filename is None or in_filename == "":
|
92 |
+
return "", build_html_output(
|
93 |
+
"Please first upload a file and then click "
|
94 |
+
'the button "submit for recognition"',
|
95 |
+
"result_item_error",
|
96 |
+
)
|
97 |
+
|
98 |
+
logging.info(f"Processing uploaded file: {in_filename}")
|
99 |
+
try:
|
100 |
+
return process(
|
101 |
+
in_filename=in_filename,
|
102 |
+
language=language,
|
103 |
+
repo_id=repo_id,
|
104 |
+
decoding_method=decoding_method,
|
105 |
+
num_active_paths=num_active_paths,
|
106 |
+
)
|
107 |
+
except Exception as e:
|
108 |
+
logging.info(str(e))
|
109 |
+
return "", build_html_output(str(e), "result_item_error")
|
110 |
+
|
111 |
+
|
112 |
+
def process_microphone(
|
113 |
+
language: str,
|
114 |
+
repo_id: str,
|
115 |
+
decoding_method: str,
|
116 |
+
num_active_paths: int,
|
117 |
+
in_filename: str,
|
118 |
+
):
|
119 |
+
if in_filename is None or in_filename == "":
|
120 |
+
return "", build_html_output(
|
121 |
+
"Please first click 'Record from microphone', speak, "
|
122 |
+
"click 'Stop recording', and then "
|
123 |
+
"click the button 'submit for recognition'",
|
124 |
+
"result_item_error",
|
125 |
+
)
|
126 |
+
|
127 |
+
logging.info(f"Processing microphone: {in_filename}")
|
128 |
+
try:
|
129 |
+
return process(
|
130 |
+
in_filename=in_filename,
|
131 |
+
language=language,
|
132 |
+
repo_id=repo_id,
|
133 |
+
decoding_method=decoding_method,
|
134 |
+
num_active_paths=num_active_paths,
|
135 |
+
)
|
136 |
+
except Exception as e:
|
137 |
+
logging.info(str(e))
|
138 |
+
return "", build_html_output(str(e), "result_item_error")
|
139 |
+
|
140 |
+
|
141 |
+
@torch.no_grad()
|
142 |
+
def process(
|
143 |
+
language: str,
|
144 |
+
repo_id: str,
|
145 |
+
decoding_method: str,
|
146 |
+
num_active_paths: int,
|
147 |
+
in_filename: str,
|
148 |
+
):
|
149 |
+
logging.info(f"language: {language}")
|
150 |
+
logging.info(f"repo_id: {repo_id}")
|
151 |
+
logging.info(f"decoding_method: {decoding_method}")
|
152 |
+
logging.info(f"num_active_paths: {num_active_paths}")
|
153 |
+
logging.info(f"in_filename: {in_filename}")
|
154 |
+
|
155 |
+
filename = convert_to_wav(in_filename)
|
156 |
+
|
157 |
+
now = datetime.now()
|
158 |
+
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
|
159 |
+
logging.info(f"Started at {date_time}")
|
160 |
+
|
161 |
+
start = time.time()
|
162 |
+
|
163 |
+
recognizer = get_pretrained_model(
|
164 |
+
repo_id,
|
165 |
+
decoding_method=decoding_method,
|
166 |
+
num_active_paths=num_active_paths,
|
167 |
+
)
|
168 |
+
|
169 |
+
text = decode(recognizer, filename)
|
170 |
+
|
171 |
+
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
|
172 |
+
end = time.time()
|
173 |
+
|
174 |
+
metadata = torchaudio.info(filename)
|
175 |
+
duration = metadata.num_frames / sample_rate
|
176 |
+
rtf = (end - start) / duration
|
177 |
+
|
178 |
+
logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")
|
179 |
+
|
180 |
+
info = f"""
|
181 |
+
Wave duration : {duration: .3f} s <br/>
|
182 |
+
Processing time: {end - start: .3f} s <br/>
|
183 |
+
RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/>
|
184 |
+
"""
|
185 |
+
if rtf > 1:
|
186 |
+
info += (
|
187 |
+
"<br/>We are loading the model for the first run. "
|
188 |
+
"Please run again to measure the real RTF.<br/>"
|
189 |
+
)
|
190 |
+
|
191 |
+
logging.info(info)
|
192 |
+
logging.info(f"\nrepo_id: {repo_id}\nhyp: {text}")
|
193 |
+
|
194 |
+
return text, build_html_output(info)
|
195 |
+
|
196 |
+
|
197 |
+
title = "# Automatic Speech Recognition with Next-gen Kaldi"
|
198 |
+
description = """
|
199 |
+
This space shows how to do automatic speech recognition with Next-gen Kaldi.
|
200 |
+
|
201 |
+
Please visit
|
202 |
+
<https://huggingface.co/spaces/k2-fsa/streaming-automatic-speech-recognition>
|
203 |
+
for streaming speech recognition with **Next-gen Kaldi**.
|
204 |
+
|
205 |
+
It is running on CPU within a docker container provided by Hugging Face.
|
206 |
+
|
207 |
+
See more information by visiting the following links:
|
208 |
+
|
209 |
+
- <https://github.com/k2-fsa/icefall>
|
210 |
+
- <https://github.com/k2-fsa/sherpa>
|
211 |
+
- <https://github.com/k2-fsa/k2>
|
212 |
+
- <https://github.com/lhotse-speech/lhotse>
|
213 |
+
|
214 |
+
If you want to deploy it locally, please see
|
215 |
+
<https://k2-fsa.github.io/sherpa/>
|
216 |
+
"""
|
217 |
+
|
218 |
+
# css style is copied from
|
219 |
+
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
|
220 |
+
css = """
|
221 |
+
.result {display:flex;flex-direction:column}
|
222 |
+
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
|
223 |
+
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
|
224 |
+
.result_item_error {background-color:#ff7070;color:white;align-self:start}
|
225 |
+
"""
|
226 |
+
|
227 |
+
|
228 |
+
def update_model_dropdown(language: str):
|
229 |
+
if language in language_to_models:
|
230 |
+
choices = language_to_models[language]
|
231 |
+
return gr.Dropdown.update(choices=choices, value=choices[0])
|
232 |
+
|
233 |
+
raise ValueError(f"Unsupported language: {language}")
|
234 |
+
|
235 |
+
|
236 |
+
demo = gr.Blocks(css=css)
|
237 |
+
|
238 |
+
|
239 |
+
with demo:
|
240 |
+
gr.Markdown(title)
|
241 |
+
language_choices = list(language_to_models.keys())
|
242 |
+
|
243 |
+
language_radio = gr.Radio(
|
244 |
+
label="Language",
|
245 |
+
choices=language_choices,
|
246 |
+
value=language_choices[0],
|
247 |
+
)
|
248 |
+
model_dropdown = gr.Dropdown(
|
249 |
+
choices=language_to_models[language_choices[0]],
|
250 |
+
label="Select a model",
|
251 |
+
value=language_to_models[language_choices[0]][0],
|
252 |
+
)
|
253 |
+
|
254 |
+
language_radio.change(
|
255 |
+
update_model_dropdown,
|
256 |
+
inputs=language_radio,
|
257 |
+
outputs=model_dropdown,
|
258 |
+
)
|
259 |
+
|
260 |
+
decoding_method_radio = gr.Radio(
|
261 |
+
label="Decoding method",
|
262 |
+
choices=["greedy_search", "modified_beam_search"],
|
263 |
+
value="greedy_search",
|
264 |
+
)
|
265 |
+
|
266 |
+
num_active_paths_slider = gr.Slider(
|
267 |
+
minimum=1,
|
268 |
+
value=4,
|
269 |
+
step=1,
|
270 |
+
label="Number of active paths for modified_beam_search",
|
271 |
+
)
|
272 |
+
|
273 |
+
with gr.Tabs():
|
274 |
+
with gr.TabItem("Upload from disk"):
|
275 |
+
uploaded_file = gr.Audio(
|
276 |
+
source="upload", # Choose between "microphone", "upload"
|
277 |
+
type="filepath",
|
278 |
+
optional=False,
|
279 |
+
label="Upload from disk",
|
280 |
+
)
|
281 |
+
upload_button = gr.Button("Submit for recognition")
|
282 |
+
uploaded_output = gr.Textbox(label="Recognized speech from uploaded file")
|
283 |
+
uploaded_html_info = gr.HTML(label="Info")
|
284 |
+
|
285 |
+
gr.Examples(
|
286 |
+
examples=examples,
|
287 |
+
inputs=[
|
288 |
+
language_radio,
|
289 |
+
model_dropdown,
|
290 |
+
decoding_method_radio,
|
291 |
+
num_active_paths_slider,
|
292 |
+
uploaded_file,
|
293 |
+
],
|
294 |
+
outputs=[uploaded_output, uploaded_html_info],
|
295 |
+
fn=process_uploaded_file,
|
296 |
+
)
|
297 |
+
|
298 |
+
with gr.TabItem("Record from microphone"):
|
299 |
+
microphone = gr.Audio(
|
300 |
+
source="microphone", # Choose between "microphone", "upload"
|
301 |
+
type="filepath",
|
302 |
+
optional=False,
|
303 |
+
label="Record from microphone",
|
304 |
+
)
|
305 |
+
|
306 |
+
record_button = gr.Button("Submit for recognition")
|
307 |
+
recorded_output = gr.Textbox(label="Recognized speech from recordings")
|
308 |
+
recorded_html_info = gr.HTML(label="Info")
|
309 |
+
|
310 |
+
gr.Examples(
|
311 |
+
examples=examples,
|
312 |
+
inputs=[
|
313 |
+
language_radio,
|
314 |
+
model_dropdown,
|
315 |
+
decoding_method_radio,
|
316 |
+
num_active_paths_slider,
|
317 |
+
microphone,
|
318 |
+
],
|
319 |
+
outputs=[recorded_output, recorded_html_info],
|
320 |
+
fn=process_microphone,
|
321 |
+
)
|
322 |
+
|
323 |
+
with gr.TabItem("From URL"):
|
324 |
+
url_textbox = gr.Textbox(
|
325 |
+
max_lines=1,
|
326 |
+
placeholder="URL to an audio file",
|
327 |
+
label="URL",
|
328 |
+
interactive=True,
|
329 |
+
)
|
330 |
+
|
331 |
+
url_button = gr.Button("Submit for recognition")
|
332 |
+
url_output = gr.Textbox(label="Recognized speech from URL")
|
333 |
+
url_html_info = gr.HTML(label="Info")
|
334 |
+
|
335 |
+
upload_button.click(
|
336 |
+
process_uploaded_file,
|
337 |
+
inputs=[
|
338 |
+
language_radio,
|
339 |
+
model_dropdown,
|
340 |
+
decoding_method_radio,
|
341 |
+
num_active_paths_slider,
|
342 |
+
uploaded_file,
|
343 |
+
],
|
344 |
+
outputs=[uploaded_output, uploaded_html_info],
|
345 |
+
)
|
346 |
+
|
347 |
+
record_button.click(
|
348 |
+
process_microphone,
|
349 |
+
inputs=[
|
350 |
+
language_radio,
|
351 |
+
model_dropdown,
|
352 |
+
decoding_method_radio,
|
353 |
+
num_active_paths_slider,
|
354 |
+
microphone,
|
355 |
+
],
|
356 |
+
outputs=[recorded_output, recorded_html_info],
|
357 |
+
)
|
358 |
+
|
359 |
+
url_button.click(
|
360 |
+
process_url,
|
361 |
+
inputs=[
|
362 |
+
language_radio,
|
363 |
+
model_dropdown,
|
364 |
+
decoding_method_radio,
|
365 |
+
num_active_paths_slider,
|
366 |
+
url_textbox,
|
367 |
+
],
|
368 |
+
outputs=[url_output, url_html_info],
|
369 |
+
)
|
370 |
+
|
371 |
+
gr.Markdown(description)
|
372 |
+
|
373 |
+
torch.set_num_threads(1)
|
374 |
+
torch.set_num_interop_threads(1)
|
375 |
+
|
376 |
+
torch._C._jit_set_profiling_executor(False)
|
377 |
+
torch._C._jit_set_profiling_mode(False)
|
378 |
+
torch._C._set_graph_executor_optimize(False)
|
379 |
+
|
380 |
+
if __name__ == "__main__":
|
381 |
+
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
382 |
+
|
383 |
+
logging.basicConfig(format=formatter, level=logging.INFO)
|
384 |
+
|
385 |
+
demo.launch()
|
decode.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
2 |
+
#
|
3 |
+
# Copied from https://github.com/k2-fsa/sherpa/blob/master/sherpa/bin/conformer_rnnt/decode.py
|
4 |
+
#
|
5 |
+
# See LICENSE for clarification regarding multiple authors
|
6 |
+
#
|
7 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
+
# you may not use this file except in compliance with the License.
|
9 |
+
# You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing, software
|
14 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
+
# See the License for the specific language governing permissions and
|
17 |
+
# limitations under the License.
|
18 |
+
|
19 |
+
import math
|
20 |
+
from typing import List
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from sherpa import RnntConformerModel, greedy_search, modified_beam_search
|
24 |
+
from torch.nn.utils.rnn import pad_sequence
|
25 |
+
|
26 |
+
LOG_EPS = math.log(1e-10)
|
27 |
+
|
28 |
+
|
29 |
+
@torch.no_grad()
|
30 |
+
def run_model_and_do_greedy_search(
|
31 |
+
model: RnntConformerModel,
|
32 |
+
features: List[torch.Tensor],
|
33 |
+
) -> List[List[int]]:
|
34 |
+
"""Run RNN-T model with the given features and use greedy search
|
35 |
+
to decode the output of the model.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
model:
|
39 |
+
The RNN-T model.
|
40 |
+
features:
|
41 |
+
A list of 2-D tensors. Each entry is of shape
|
42 |
+
(num_frames, feature_dim).
|
43 |
+
Returns:
|
44 |
+
Return a list-of-list containing the decoding token IDs.
|
45 |
+
"""
|
46 |
+
features_length = torch.tensor(
|
47 |
+
[f.size(0) for f in features],
|
48 |
+
dtype=torch.int64,
|
49 |
+
)
|
50 |
+
features = pad_sequence(
|
51 |
+
features,
|
52 |
+
batch_first=True,
|
53 |
+
padding_value=LOG_EPS,
|
54 |
+
)
|
55 |
+
|
56 |
+
device = model.device
|
57 |
+
features = features.to(device)
|
58 |
+
features_length = features_length.to(device)
|
59 |
+
|
60 |
+
encoder_out, encoder_out_length = model.encoder(
|
61 |
+
features=features,
|
62 |
+
features_length=features_length,
|
63 |
+
)
|
64 |
+
|
65 |
+
hyp_tokens = greedy_search(
|
66 |
+
model=model,
|
67 |
+
encoder_out=encoder_out,
|
68 |
+
encoder_out_length=encoder_out_length.cpu(),
|
69 |
+
)
|
70 |
+
return hyp_tokens
|
71 |
+
|
72 |
+
|
73 |
+
@torch.no_grad()
|
74 |
+
def run_model_and_do_modified_beam_search(
|
75 |
+
model: RnntConformerModel,
|
76 |
+
features: List[torch.Tensor],
|
77 |
+
num_active_paths: int,
|
78 |
+
) -> List[List[int]]:
|
79 |
+
"""Run RNN-T model with the given features and use greedy search
|
80 |
+
to decode the output of the model.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
model:
|
84 |
+
The RNN-T model.
|
85 |
+
features:
|
86 |
+
A list of 2-D tensors. Each entry is of shape
|
87 |
+
(num_frames, feature_dim).
|
88 |
+
num_active_paths:
|
89 |
+
Used only when decoding_method is modified_beam_search.
|
90 |
+
It specifies number of active paths for each utterance. Due to
|
91 |
+
merging paths with identical token sequences, the actual number
|
92 |
+
may be less than "num_active_paths".
|
93 |
+
Returns:
|
94 |
+
Return a list-of-list containing the decoding token IDs.
|
95 |
+
"""
|
96 |
+
features_length = torch.tensor(
|
97 |
+
[f.size(0) for f in features],
|
98 |
+
dtype=torch.int64,
|
99 |
+
)
|
100 |
+
features = pad_sequence(
|
101 |
+
features,
|
102 |
+
batch_first=True,
|
103 |
+
padding_value=LOG_EPS,
|
104 |
+
)
|
105 |
+
|
106 |
+
device = model.device
|
107 |
+
features = features.to(device)
|
108 |
+
features_length = features_length.to(device)
|
109 |
+
|
110 |
+
encoder_out, encoder_out_length = model.encoder(
|
111 |
+
features=features,
|
112 |
+
features_length=features_length,
|
113 |
+
)
|
114 |
+
|
115 |
+
hyp_tokens = modified_beam_search(
|
116 |
+
model=model,
|
117 |
+
encoder_out=encoder_out,
|
118 |
+
encoder_out_length=encoder_out_length.cpu(),
|
119 |
+
num_active_paths=num_active_paths,
|
120 |
+
)
|
121 |
+
return hyp_tokens
|
giga-tokens.txt
ADDED
@@ -0,0 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<blk> 0
|
2 |
+
<sos/eos> 1
|
3 |
+
<unk> 2
|
4 |
+
S 3
|
5 |
+
T 4
|
6 |
+
▁THE 5
|
7 |
+
▁A 6
|
8 |
+
E 7
|
9 |
+
▁AND 8
|
10 |
+
▁TO 9
|
11 |
+
N 10
|
12 |
+
D 11
|
13 |
+
▁OF 12
|
14 |
+
' 13
|
15 |
+
ING 14
|
16 |
+
▁I 15
|
17 |
+
Y 16
|
18 |
+
▁IN 17
|
19 |
+
ED 18
|
20 |
+
▁THAT 19
|
21 |
+
▁ 20
|
22 |
+
P 21
|
23 |
+
R 22
|
24 |
+
▁YOU 23
|
25 |
+
M 24
|
26 |
+
RE 25
|
27 |
+
ER 26
|
28 |
+
C 27
|
29 |
+
O 28
|
30 |
+
▁IT 29
|
31 |
+
L 30
|
32 |
+
A 31
|
33 |
+
U 32
|
34 |
+
G 33
|
35 |
+
▁WE 34
|
36 |
+
▁IS 35
|
37 |
+
▁SO 36
|
38 |
+
AL 37
|
39 |
+
I 38
|
40 |
+
▁S 39
|
41 |
+
▁RE 40
|
42 |
+
AR 41
|
43 |
+
B 42
|
44 |
+
▁FOR 43
|
45 |
+
▁C 44
|
46 |
+
▁BE 45
|
47 |
+
LE 46
|
48 |
+
F 47
|
49 |
+
W 48
|
50 |
+
▁E 49
|
51 |
+
▁HE 50
|
52 |
+
LL 51
|
53 |
+
▁WAS 52
|
54 |
+
LY 53
|
55 |
+
OR 54
|
56 |
+
IN 55
|
57 |
+
▁F 56
|
58 |
+
VE 57
|
59 |
+
▁THIS 58
|
60 |
+
TH 59
|
61 |
+
K 60
|
62 |
+
▁ON 61
|
63 |
+
IT 62
|
64 |
+
▁B 63
|
65 |
+
▁WITH 64
|
66 |
+
▁BUT 65
|
67 |
+
EN 66
|
68 |
+
CE 67
|
69 |
+
RI 68
|
70 |
+
▁DO 69
|
71 |
+
UR 70
|
72 |
+
▁HAVE 71
|
73 |
+
▁DE 72
|
74 |
+
▁ME 73
|
75 |
+
▁T 74
|
76 |
+
ENT 75
|
77 |
+
CH 76
|
78 |
+
▁THEY 77
|
79 |
+
▁NOT 78
|
80 |
+
ES 79
|
81 |
+
V 80
|
82 |
+
▁AS 81
|
83 |
+
RA 82
|
84 |
+
▁P 83
|
85 |
+
ON 84
|
86 |
+
TER 85
|
87 |
+
▁ARE 86
|
88 |
+
▁WHAT 87
|
89 |
+
IC 88
|
90 |
+
▁ST 89
|
91 |
+
▁LIKE 90
|
92 |
+
ATION 91
|
93 |
+
▁OR 92
|
94 |
+
▁CA 93
|
95 |
+
▁AT 94
|
96 |
+
H 95
|
97 |
+
▁KNOW 96
|
98 |
+
▁G 97
|
99 |
+
AN 98
|
100 |
+
▁CON 99
|
101 |
+
IL 100
|
102 |
+
ND 101
|
103 |
+
RO 102
|
104 |
+
▁HIS 103
|
105 |
+
▁CAN 104
|
106 |
+
▁ALL 105
|
107 |
+
TE 106
|
108 |
+
▁THERE 107
|
109 |
+
▁SU 108
|
110 |
+
▁MO 109
|
111 |
+
▁MA 110
|
112 |
+
LI 111
|
113 |
+
▁ONE 112
|
114 |
+
▁ABOUT 113
|
115 |
+
LA 114
|
116 |
+
▁CO 115
|
117 |
+
- 116
|
118 |
+
▁MY 117
|
119 |
+
▁HAD 118
|
120 |
+
CK 119
|
121 |
+
NG 120
|
122 |
+
▁NO 121
|
123 |
+
MENT 122
|
124 |
+
AD 123
|
125 |
+
LO 124
|
126 |
+
ME 125
|
127 |
+
▁AN 126
|
128 |
+
▁FROM 127
|
129 |
+
NE 128
|
130 |
+
▁IF 129
|
131 |
+
VER 130
|
132 |
+
▁JUST 131
|
133 |
+
▁PRO 132
|
134 |
+
ION 133
|
135 |
+
▁PA 134
|
136 |
+
▁WHO 135
|
137 |
+
▁SE 136
|
138 |
+
EL 137
|
139 |
+
IR 138
|
140 |
+
▁US 139
|
141 |
+
▁UP 140
|
142 |
+
▁YOUR 141
|
143 |
+
CI 142
|
144 |
+
RY 143
|
145 |
+
▁GO 144
|
146 |
+
▁SHE 145
|
147 |
+
▁LE 146
|
148 |
+
▁OUT 147
|
149 |
+
▁PO 148
|
150 |
+
▁HO 149
|
151 |
+
ATE 150
|
152 |
+
▁BO 151
|
153 |
+
▁BY 152
|
154 |
+
▁FA 153
|
155 |
+
▁MI 154
|
156 |
+
AS 155
|
157 |
+
MP 156
|
158 |
+
▁HER 157
|
159 |
+
VI 158
|
160 |
+
▁THINK 159
|
161 |
+
▁SOME 160
|
162 |
+
▁WHEN 161
|
163 |
+
▁AH 162
|
164 |
+
▁PEOPLE 163
|
165 |
+
IG 164
|
166 |
+
▁WA 165
|
167 |
+
▁TE 166
|
168 |
+
▁LA 167
|
169 |
+
▁WERE 168
|
170 |
+
▁LI 169
|
171 |
+
▁WOULD 170
|
172 |
+
▁SEE 171
|
173 |
+
▁WHICH 172
|
174 |
+
DE 173
|
175 |
+
GE 174
|
176 |
+
▁K 175
|
177 |
+
IGHT 176
|
178 |
+
▁HA 177
|
179 |
+
▁OUR 178
|
180 |
+
UN 179
|
181 |
+
▁HOW 180
|
182 |
+
▁GET 181
|
183 |
+
IS 182
|
184 |
+
UT 183
|
185 |
+
Z 184
|
186 |
+
CO 185
|
187 |
+
ET 186
|
188 |
+
UL 187
|
189 |
+
IES 188
|
190 |
+
IVE 189
|
191 |
+
AT 190
|
192 |
+
▁O 191
|
193 |
+
▁DON 192
|
194 |
+
LU 193
|
195 |
+
▁TIME 194
|
196 |
+
▁WILL 195
|
197 |
+
▁MORE 196
|
198 |
+
▁SP 197
|
199 |
+
▁NOW 198
|
200 |
+
RU 199
|
201 |
+
▁THEIR 200
|
202 |
+
▁UN 201
|
203 |
+
ITY 202
|
204 |
+
OL 203
|
205 |
+
X 204
|
206 |
+
TI 205
|
207 |
+
US 206
|
208 |
+
▁VERY 207
|
209 |
+
TION 208
|
210 |
+
▁FI 209
|
211 |
+
▁SAY 210
|
212 |
+
▁BECAUSE 211
|
213 |
+
▁EX 212
|
214 |
+
▁RO 213
|
215 |
+
ERS 214
|
216 |
+
IST 215
|
217 |
+
▁DA 216
|
218 |
+
TING 217
|
219 |
+
▁EN 218
|
220 |
+
OM 219
|
221 |
+
▁BA 220
|
222 |
+
▁BEEN 221
|
223 |
+
▁LO 222
|
224 |
+
▁UM 223
|
225 |
+
AGE 224
|
226 |
+
ABLE 225
|
227 |
+
▁WO 226
|
228 |
+
▁RA 227
|
229 |
+
▁OTHER 228
|
230 |
+
▁REALLY 229
|
231 |
+
ENCE 230
|
232 |
+
▁GOING 231
|
233 |
+
▁HIM 232
|
234 |
+
▁HAS 233
|
235 |
+
▁THEM 234
|
236 |
+
▁DIS 235
|
237 |
+
▁WANT 236
|
238 |
+
ID 237
|
239 |
+
TA 238
|
240 |
+
▁LOOK 239
|
241 |
+
KE 240
|
242 |
+
▁DID 241
|
243 |
+
▁SA 242
|
244 |
+
▁VI 243
|
245 |
+
▁SAID 244
|
246 |
+
▁RIGHT 245
|
247 |
+
▁THESE 246
|
248 |
+
▁WORK 247
|
249 |
+
▁COM 248
|
250 |
+
ALLY 249
|
251 |
+
FF 250
|
252 |
+
QU 251
|
253 |
+
AC 252
|
254 |
+
▁DR 253
|
255 |
+
▁WAY 254
|
256 |
+
▁INTO 255
|
257 |
+
MO 256
|
258 |
+
TED 257
|
259 |
+
EST 258
|
260 |
+
▁HERE 259
|
261 |
+
OK 260
|
262 |
+
▁COULD 261
|
263 |
+
▁WELL 262
|
264 |
+
MA 263
|
265 |
+
▁PRE 264
|
266 |
+
▁DI 265
|
267 |
+
MAN 266
|
268 |
+
▁COMP 267
|
269 |
+
▁THEN 268
|
270 |
+
IM 269
|
271 |
+
▁PER 270
|
272 |
+
▁NA 271
|
273 |
+
▁WHERE 272
|
274 |
+
▁TWO 273
|
275 |
+
▁WI 274
|
276 |
+
▁FE 275
|
277 |
+
INE 276
|
278 |
+
▁ANY 277
|
279 |
+
TURE 278
|
280 |
+
▁OVER 279
|
281 |
+
BO 280
|
282 |
+
ACH 281
|
283 |
+
OW 282
|
284 |
+
▁MAKE 283
|
285 |
+
▁TRA 284
|
286 |
+
HE 285
|
287 |
+
UND 286
|
288 |
+
▁EVEN 287
|
289 |
+
ANCE 288
|
290 |
+
▁YEAR 289
|
291 |
+
HO 290
|
292 |
+
AM 291
|
293 |
+
▁CHA 292
|
294 |
+
▁BACK 293
|
295 |
+
VO 294
|
296 |
+
ANT 295
|
297 |
+
DI 296
|
298 |
+
▁ALSO 297
|
299 |
+
▁THOSE 298
|
300 |
+
▁MAN 299
|
301 |
+
CTION 300
|
302 |
+
ICAL 301
|
303 |
+
▁JO 302
|
304 |
+
▁OP 303
|
305 |
+
▁NEW 304
|
306 |
+
▁MU 305
|
307 |
+
▁HU 306
|
308 |
+
▁KIND 307
|
309 |
+
▁NE 308
|
310 |
+
CA 309
|
311 |
+
END 310
|
312 |
+
TIC 311
|
313 |
+
FUL 312
|
314 |
+
▁YEAH 313
|
315 |
+
SH 314
|
316 |
+
▁APP 315
|
317 |
+
▁THINGS 316
|
318 |
+
SIDE 317
|
319 |
+
▁GOOD 318
|
320 |
+
ONE 319
|
321 |
+
▁TAKE 320
|
322 |
+
CU 321
|
323 |
+
▁EVERY 322
|
324 |
+
▁MEAN 323
|
325 |
+
▁FIRST 324
|
326 |
+
OP 325
|
327 |
+
▁TH 326
|
328 |
+
▁MUCH 327
|
329 |
+
▁PART 328
|
330 |
+
UGH 329
|
331 |
+
▁COME 330
|
332 |
+
J 331
|
333 |
+
▁THAN 332
|
334 |
+
▁EXP 333
|
335 |
+
▁AGAIN 334
|
336 |
+
▁LITTLE 335
|
337 |
+
MB 336
|
338 |
+
▁NEED 337
|
339 |
+
▁TALK 338
|
340 |
+
IF 339
|
341 |
+
FOR 340
|
342 |
+
▁SH 341
|
343 |
+
ISH 342
|
344 |
+
▁STA 343
|
345 |
+
ATED 344
|
346 |
+
▁GU 345
|
347 |
+
▁LET 346
|
348 |
+
IA 347
|
349 |
+
▁MAR 348
|
350 |
+
▁DOWN 349
|
351 |
+
▁DAY 350
|
352 |
+
▁GA 351
|
353 |
+
▁SOMETHING 352
|
354 |
+
▁BU 353
|
355 |
+
DUC 354
|
356 |
+
HA 355
|
357 |
+
▁LOT 356
|
358 |
+
▁RU 357
|
359 |
+
▁THOUGH 358
|
360 |
+
▁GREAT 359
|
361 |
+
AIN 360
|
362 |
+
▁THROUGH 361
|
363 |
+
▁THING 362
|
364 |
+
OUS 363
|
365 |
+
▁PRI 364
|
366 |
+
▁GOT 365
|
367 |
+
▁SHOULD 366
|
368 |
+
▁AFTER 367
|
369 |
+
▁HEAR 368
|
370 |
+
▁TA 369
|
371 |
+
▁ONLY 370
|
372 |
+
▁CHI 371
|
373 |
+
IOUS 372
|
374 |
+
▁SHA 373
|
375 |
+
▁MOST 374
|
376 |
+
▁ACTUALLY 375
|
377 |
+
▁START 376
|
378 |
+
LIC 377
|
379 |
+
▁VA 378
|
380 |
+
▁RI 379
|
381 |
+
DAY 380
|
382 |
+
IAN 381
|
383 |
+
▁DOES 382
|
384 |
+
ROW 383
|
385 |
+
▁GRA 384
|
386 |
+
ITION 385
|
387 |
+
▁MANY 386
|
388 |
+
▁BEFORE 387
|
389 |
+
▁GIVE 388
|
390 |
+
PORT 389
|
391 |
+
QUI 390
|
392 |
+
▁LIFE 391
|
393 |
+
▁WORLD 392
|
394 |
+
▁PI 393
|
395 |
+
▁LONG 394
|
396 |
+
▁THREE 395
|
397 |
+
IZE 396
|
398 |
+
NESS 397
|
399 |
+
▁SHOW 398
|
400 |
+
PH 399
|
401 |
+
▁WHY 400
|
402 |
+
▁QUESTION 401
|
403 |
+
WARD 402
|
404 |
+
▁THANK 403
|
405 |
+
▁PH 404
|
406 |
+
▁DIFFERENT 405
|
407 |
+
▁OWN 406
|
408 |
+
▁FEEL 407
|
409 |
+
▁MIGHT 408
|
410 |
+
▁HAPPEN 409
|
411 |
+
▁MADE 410
|
412 |
+
▁BRO 411
|
413 |
+
IBLE 412
|
414 |
+
▁HI 413
|
415 |
+
▁STATE 414
|
416 |
+
▁HAND 415
|
417 |
+
▁NEVER 416
|
418 |
+
▁PLACE 417
|
419 |
+
▁LOVE 418
|
420 |
+
▁DU 419
|
421 |
+
▁POINT 420
|
422 |
+
▁HELP 421
|
423 |
+
▁COUNT 422
|
424 |
+
▁STILL 423
|
425 |
+
▁MR 424
|
426 |
+
▁FIND 425
|
427 |
+
▁PERSON 426
|
428 |
+
▁CAME 427
|
429 |
+
▁SAME 428
|
430 |
+
▁LAST 429
|
431 |
+
▁HIGH 430
|
432 |
+
▁OLD 431
|
433 |
+
▁UNDER 432
|
434 |
+
▁FOUR 433
|
435 |
+
▁AROUND 434
|
436 |
+
▁SORT 435
|
437 |
+
▁CHANGE 436
|
438 |
+
▁YES 437
|
439 |
+
SHIP 438
|
440 |
+
▁ANOTHER 439
|
441 |
+
ATIVE 440
|
442 |
+
▁FOUND 441
|
443 |
+
▁JA 442
|
444 |
+
▁ALWAYS 443
|
445 |
+
▁NEXT 444
|
446 |
+
▁TURN 445
|
447 |
+
▁JU 446
|
448 |
+
▁SIX 447
|
449 |
+
▁FACT 448
|
450 |
+
▁INTEREST 449
|
451 |
+
▁WORD 450
|
452 |
+
▁THOUSAND 451
|
453 |
+
▁HUNDRED 452
|
454 |
+
▁NUMBER 453
|
455 |
+
▁IDEA 454
|
456 |
+
▁PLAN 455
|
457 |
+
▁COURSE 456
|
458 |
+
▁SCHOOL 457
|
459 |
+
▁HOUSE 458
|
460 |
+
▁TWENTY 459
|
461 |
+
▁JE 460
|
462 |
+
▁PLAY 461
|
463 |
+
▁AWAY 462
|
464 |
+
▁LEARN 463
|
465 |
+
▁HARD 464
|
466 |
+
▁WEEK 465
|
467 |
+
▁BETTER 466
|
468 |
+
▁WHILE 467
|
469 |
+
▁FRIEND 468
|
470 |
+
▁OKAY 469
|
471 |
+
▁NINE 470
|
472 |
+
▁UNDERSTAND 471
|
473 |
+
▁KEEP 472
|
474 |
+
▁GONNA 473
|
475 |
+
▁SYSTEM 474
|
476 |
+
▁AMERICA 475
|
477 |
+
▁POWER 476
|
478 |
+
▁IMPORTANT 477
|
479 |
+
▁WITHOUT 478
|
480 |
+
▁MAYBE 479
|
481 |
+
▁SEVEN 480
|
482 |
+
▁BETWEEN 481
|
483 |
+
▁BUILD 482
|
484 |
+
▁CERTAIN 483
|
485 |
+
▁PROBLEM 484
|
486 |
+
▁MONEY 485
|
487 |
+
▁BELIEVE 486
|
488 |
+
▁SECOND 487
|
489 |
+
▁REASON 488
|
490 |
+
▁TOGETHER 489
|
491 |
+
▁PUBLIC 490
|
492 |
+
▁ANYTHING 491
|
493 |
+
▁SPEAK 492
|
494 |
+
▁BUSINESS 493
|
495 |
+
▁EVERYTHING 494
|
496 |
+
▁CLOSE 495
|
497 |
+
▁QUITE 496
|
498 |
+
▁ANSWER 497
|
499 |
+
▁ENOUGH 498
|
500 |
+
Q 499
|
model.py
ADDED
@@ -0,0 +1,1001 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
2 |
+
#
|
3 |
+
# See LICENSE for clarification regarding multiple authors
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import os
|
18 |
+
from functools import lru_cache
|
19 |
+
from typing import Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torchaudio
|
23 |
+
from huggingface_hub import hf_hub_download
|
24 |
+
|
25 |
+
os.system(
|
26 |
+
"cp -v /home/user/.local/lib/python3.8/site-packages/k2/lib/*.so /home/user/.local/lib/python3.8/site-packages/sherpa/lib/"
|
27 |
+
)
|
28 |
+
|
29 |
+
import k2 # noqa
|
30 |
+
import sherpa
|
31 |
+
import sherpa_onnx
|
32 |
+
import numpy as np
|
33 |
+
from typing import Tuple
|
34 |
+
import wave
|
35 |
+
|
36 |
+
sample_rate = 16000
|
37 |
+
|
38 |
+
|
39 |
+
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]:
|
40 |
+
"""
|
41 |
+
Args:
|
42 |
+
wave_filename:
|
43 |
+
Path to a wave file. It should be single channel and each sample should
|
44 |
+
be 16-bit. Its sample rate does not need to be 16kHz.
|
45 |
+
Returns:
|
46 |
+
Return a tuple containing:
|
47 |
+
- A 1-D array of dtype np.float32 containing the samples, which are
|
48 |
+
normalized to the range [-1, 1].
|
49 |
+
- sample rate of the wave file
|
50 |
+
"""
|
51 |
+
|
52 |
+
with wave.open(wave_filename) as f:
|
53 |
+
assert f.getnchannels() == 1, f.getnchannels()
|
54 |
+
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes
|
55 |
+
num_samples = f.getnframes()
|
56 |
+
samples = f.readframes(num_samples)
|
57 |
+
samples_int16 = np.frombuffer(samples, dtype=np.int16)
|
58 |
+
samples_float32 = samples_int16.astype(np.float32)
|
59 |
+
|
60 |
+
samples_float32 = samples_float32 / 32768
|
61 |
+
return samples_float32, f.getframerate()
|
62 |
+
|
63 |
+
|
64 |
+
def decode_offline_recognizer(
|
65 |
+
recognizer: sherpa.OfflineRecognizer,
|
66 |
+
filename: str,
|
67 |
+
) -> str:
|
68 |
+
s = recognizer.create_stream()
|
69 |
+
|
70 |
+
s.accept_wave_file(filename)
|
71 |
+
recognizer.decode_stream(s)
|
72 |
+
|
73 |
+
text = s.result.text.strip()
|
74 |
+
return text.lower()
|
75 |
+
|
76 |
+
|
77 |
+
def decode_online_recognizer(
|
78 |
+
recognizer: sherpa.OnlineRecognizer,
|
79 |
+
filename: str,
|
80 |
+
) -> str:
|
81 |
+
samples, actual_sample_rate = torchaudio.load(filename)
|
82 |
+
assert sample_rate == actual_sample_rate, (
|
83 |
+
sample_rate,
|
84 |
+
actual_sample_rate,
|
85 |
+
)
|
86 |
+
samples = samples[0].contiguous()
|
87 |
+
|
88 |
+
s = recognizer.create_stream()
|
89 |
+
|
90 |
+
tail_padding = torch.zeros(int(sample_rate * 0.3), dtype=torch.float32)
|
91 |
+
s.accept_waveform(sample_rate, samples)
|
92 |
+
s.accept_waveform(sample_rate, tail_padding)
|
93 |
+
s.input_finished()
|
94 |
+
|
95 |
+
while recognizer.is_ready(s):
|
96 |
+
recognizer.decode_stream(s)
|
97 |
+
|
98 |
+
text = recognizer.get_result(s).text
|
99 |
+
return text.strip().lower()
|
100 |
+
|
101 |
+
|
102 |
+
def decode_offline_recognizer_sherpa_onnx(
|
103 |
+
recognizer: sherpa_onnx.OfflineRecognizer,
|
104 |
+
filename: str,
|
105 |
+
) -> str:
|
106 |
+
s = recognizer.create_stream()
|
107 |
+
samples, sample_rate = read_wave(filename)
|
108 |
+
s.accept_waveform(sample_rate, samples)
|
109 |
+
recognizer.decode_stream(s)
|
110 |
+
|
111 |
+
return s.result.text.lower()
|
112 |
+
|
113 |
+
|
114 |
+
def decode_online_recognizer_sherpa_onnx(
|
115 |
+
recognizer: sherpa_onnx.OnlineRecognizer,
|
116 |
+
filename: str,
|
117 |
+
) -> str:
|
118 |
+
s = recognizer.create_stream()
|
119 |
+
samples, sample_rate = read_wave(filename)
|
120 |
+
s.accept_waveform(sample_rate, samples)
|
121 |
+
|
122 |
+
tail_paddings = np.zeros(int(0.3 * sample_rate), dtype=np.float32)
|
123 |
+
s.accept_waveform(sample_rate, tail_paddings)
|
124 |
+
s.input_finished()
|
125 |
+
|
126 |
+
while recognizer.is_ready(s):
|
127 |
+
recognizer.decode_stream(s)
|
128 |
+
|
129 |
+
return recognizer.get_result(s).lower()
|
130 |
+
|
131 |
+
|
132 |
+
def decode(
|
133 |
+
recognizer: Union[
|
134 |
+
sherpa.OfflineRecognizer,
|
135 |
+
sherpa.OnlineRecognizer,
|
136 |
+
sherpa_onnx.OfflineRecognizer,
|
137 |
+
sherpa_onnx.OnlineRecognizer,
|
138 |
+
],
|
139 |
+
filename: str,
|
140 |
+
) -> str:
|
141 |
+
if isinstance(recognizer, sherpa.OfflineRecognizer):
|
142 |
+
return decode_offline_recognizer(recognizer, filename)
|
143 |
+
elif isinstance(recognizer, sherpa.OnlineRecognizer):
|
144 |
+
return decode_online_recognizer(recognizer, filename)
|
145 |
+
elif isinstance(recognizer, sherpa_onnx.OfflineRecognizer):
|
146 |
+
return decode_offline_recognizer_sherpa_onnx(recognizer, filename)
|
147 |
+
elif isinstance(recognizer, sherpa_onnx.OnlineRecognizer):
|
148 |
+
return decode_online_recognizer_sherpa_onnx(recognizer, filename)
|
149 |
+
else:
|
150 |
+
raise ValueError(f"Unknown recognizer type {type(recognizer)}")
|
151 |
+
|
152 |
+
|
153 |
+
@lru_cache(maxsize=30)
|
154 |
+
def get_pretrained_model(
|
155 |
+
repo_id: str,
|
156 |
+
decoding_method: str,
|
157 |
+
num_active_paths: int,
|
158 |
+
) -> Union[sherpa.OfflineRecognizer, sherpa.OnlineRecognizer]:
|
159 |
+
if repo_id in chinese_models:
|
160 |
+
return chinese_models[repo_id](
|
161 |
+
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
|
162 |
+
)
|
163 |
+
elif repo_id in english_models:
|
164 |
+
return english_models[repo_id](
|
165 |
+
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
|
166 |
+
)
|
167 |
+
elif repo_id in chinese_english_mixed_models:
|
168 |
+
return chinese_english_mixed_models[repo_id](
|
169 |
+
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
|
170 |
+
)
|
171 |
+
elif repo_id in tibetan_models:
|
172 |
+
return tibetan_models[repo_id](
|
173 |
+
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
|
174 |
+
)
|
175 |
+
elif repo_id in arabic_models:
|
176 |
+
return arabic_models[repo_id](
|
177 |
+
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
|
178 |
+
)
|
179 |
+
elif repo_id in german_models:
|
180 |
+
return german_models[repo_id](
|
181 |
+
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
|
182 |
+
)
|
183 |
+
elif repo_id in french_models:
|
184 |
+
return french_models[repo_id](
|
185 |
+
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
|
186 |
+
)
|
187 |
+
elif repo_id in japanese_models:
|
188 |
+
return japanese_models[repo_id](
|
189 |
+
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
|
190 |
+
)
|
191 |
+
elif repo_id in russian_models:
|
192 |
+
return russian_models[repo_id](
|
193 |
+
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
|
194 |
+
)
|
195 |
+
else:
|
196 |
+
raise ValueError(f"Unsupported repo_id: {repo_id}")
|
197 |
+
|
198 |
+
|
199 |
+
def _get_nn_model_filename(
|
200 |
+
repo_id: str,
|
201 |
+
filename: str,
|
202 |
+
subfolder: str = "exp",
|
203 |
+
) -> str:
|
204 |
+
nn_model_filename = hf_hub_download(
|
205 |
+
repo_id=repo_id,
|
206 |
+
filename=filename,
|
207 |
+
subfolder=subfolder,
|
208 |
+
)
|
209 |
+
return nn_model_filename
|
210 |
+
|
211 |
+
|
212 |
+
def _get_bpe_model_filename(
|
213 |
+
repo_id: str,
|
214 |
+
filename: str = "bpe.model",
|
215 |
+
subfolder: str = "data/lang_bpe_500",
|
216 |
+
) -> str:
|
217 |
+
bpe_model_filename = hf_hub_download(
|
218 |
+
repo_id=repo_id,
|
219 |
+
filename=filename,
|
220 |
+
subfolder=subfolder,
|
221 |
+
)
|
222 |
+
return bpe_model_filename
|
223 |
+
|
224 |
+
|
225 |
+
def _get_token_filename(
|
226 |
+
repo_id: str,
|
227 |
+
filename: str = "tokens.txt",
|
228 |
+
subfolder: str = "data/lang_char",
|
229 |
+
) -> str:
|
230 |
+
token_filename = hf_hub_download(
|
231 |
+
repo_id=repo_id,
|
232 |
+
filename=filename,
|
233 |
+
subfolder=subfolder,
|
234 |
+
)
|
235 |
+
return token_filename
|
236 |
+
|
237 |
+
|
238 |
+
@lru_cache(maxsize=10)
|
239 |
+
def _get_aishell2_pretrained_model(
|
240 |
+
repo_id: str,
|
241 |
+
decoding_method: str,
|
242 |
+
num_active_paths: int,
|
243 |
+
) -> sherpa.OfflineRecognizer:
|
244 |
+
assert repo_id in [
|
245 |
+
# context-size 1
|
246 |
+
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12", # noqa
|
247 |
+
# context-size 2
|
248 |
+
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12", # noqa
|
249 |
+
], repo_id
|
250 |
+
|
251 |
+
nn_model = _get_nn_model_filename(
|
252 |
+
repo_id=repo_id,
|
253 |
+
filename="cpu_jit.pt",
|
254 |
+
)
|
255 |
+
tokens = _get_token_filename(repo_id=repo_id)
|
256 |
+
|
257 |
+
feat_config = sherpa.FeatureConfig()
|
258 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
259 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
260 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
261 |
+
|
262 |
+
config = sherpa.OfflineRecognizerConfig(
|
263 |
+
nn_model=nn_model,
|
264 |
+
tokens=tokens,
|
265 |
+
use_gpu=False,
|
266 |
+
feat_config=feat_config,
|
267 |
+
decoding_method=decoding_method,
|
268 |
+
num_active_paths=num_active_paths,
|
269 |
+
)
|
270 |
+
|
271 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
272 |
+
|
273 |
+
return recognizer
|
274 |
+
|
275 |
+
|
276 |
+
@lru_cache(maxsize=10)
|
277 |
+
def _get_russian_pre_trained_model(
|
278 |
+
repo_id: str, decoding_method: str, num_active_paths: int
|
279 |
+
) -> sherpa_onnx.OfflineRecognizer:
|
280 |
+
assert repo_id in (
|
281 |
+
"alphacep/vosk-model-ru",
|
282 |
+
"alphacep/vosk-model-small-ru",
|
283 |
+
), repo_id
|
284 |
+
|
285 |
+
if repo_id == "alphacep/vosk-model-ru":
|
286 |
+
model_dir = "am-onnx"
|
287 |
+
elif repo_id == "alphacep/vosk-model-small-ru":
|
288 |
+
model_dir = "am"
|
289 |
+
|
290 |
+
encoder_model = _get_nn_model_filename(
|
291 |
+
repo_id=repo_id,
|
292 |
+
filename="encoder.onnx",
|
293 |
+
subfolder=model_dir,
|
294 |
+
)
|
295 |
+
|
296 |
+
decoder_model = _get_nn_model_filename(
|
297 |
+
repo_id=repo_id,
|
298 |
+
filename="decoder.onnx",
|
299 |
+
subfolder=model_dir,
|
300 |
+
)
|
301 |
+
|
302 |
+
joiner_model = _get_nn_model_filename(
|
303 |
+
repo_id=repo_id,
|
304 |
+
filename="joiner.onnx",
|
305 |
+
subfolder=model_dir,
|
306 |
+
)
|
307 |
+
|
308 |
+
tokens = _get_token_filename(repo_id=repo_id, subfolder="lang")
|
309 |
+
|
310 |
+
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
|
311 |
+
tokens=tokens,
|
312 |
+
encoder=encoder_model,
|
313 |
+
decoder=decoder_model,
|
314 |
+
joiner=joiner_model,
|
315 |
+
num_threads=2,
|
316 |
+
sample_rate=16000,
|
317 |
+
feature_dim=80,
|
318 |
+
decoding_method=decoding_method,
|
319 |
+
)
|
320 |
+
|
321 |
+
return recognizer
|
322 |
+
|
323 |
+
|
324 |
+
@lru_cache(maxsize=10)
|
325 |
+
def _get_whisper_model(
|
326 |
+
repo_id: str, decoding_method: str, num_active_paths: int
|
327 |
+
) -> sherpa_onnx.OfflineRecognizer:
|
328 |
+
name = repo_id.split("-")[1]
|
329 |
+
assert name in ("tiny.en", "base.en", "small.en", "medium.en"), repo_id
|
330 |
+
full_repo_id = "csukuangfj/sherpa-onnx-whisper-" + name
|
331 |
+
encoder = _get_nn_model_filename(
|
332 |
+
repo_id=full_repo_id,
|
333 |
+
filename=f"{name}-encoder.int8.ort",
|
334 |
+
subfolder=".",
|
335 |
+
)
|
336 |
+
|
337 |
+
decoder = _get_nn_model_filename(
|
338 |
+
repo_id=full_repo_id,
|
339 |
+
filename=f"{name}-decoder.int8.ort",
|
340 |
+
subfolder=".",
|
341 |
+
)
|
342 |
+
|
343 |
+
tokens = _get_token_filename(
|
344 |
+
repo_id=full_repo_id, subfolder=".", filename=f"{name}-tokens.txt"
|
345 |
+
)
|
346 |
+
|
347 |
+
recognizer = sherpa_onnx.OfflineRecognizer.from_whisper(
|
348 |
+
encoder=encoder,
|
349 |
+
decoder=decoder,
|
350 |
+
tokens=tokens,
|
351 |
+
num_threads=2,
|
352 |
+
)
|
353 |
+
|
354 |
+
return recognizer
|
355 |
+
|
356 |
+
|
357 |
+
@lru_cache(maxsize=10)
|
358 |
+
def _get_gigaspeech_pre_trained_model(
|
359 |
+
repo_id: str,
|
360 |
+
decoding_method: str,
|
361 |
+
num_active_paths: int,
|
362 |
+
) -> sherpa.OfflineRecognizer:
|
363 |
+
assert repo_id in [
|
364 |
+
"wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2",
|
365 |
+
], repo_id
|
366 |
+
|
367 |
+
nn_model = _get_nn_model_filename(
|
368 |
+
repo_id=repo_id,
|
369 |
+
filename="cpu_jit-iter-3488000-avg-20.pt",
|
370 |
+
)
|
371 |
+
tokens = "./giga-tokens.txt"
|
372 |
+
|
373 |
+
feat_config = sherpa.FeatureConfig()
|
374 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
375 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
376 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
377 |
+
|
378 |
+
config = sherpa.OfflineRecognizerConfig(
|
379 |
+
nn_model=nn_model,
|
380 |
+
tokens=tokens,
|
381 |
+
use_gpu=False,
|
382 |
+
feat_config=feat_config,
|
383 |
+
decoding_method=decoding_method,
|
384 |
+
num_active_paths=num_active_paths,
|
385 |
+
)
|
386 |
+
|
387 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
388 |
+
|
389 |
+
return recognizer
|
390 |
+
|
391 |
+
|
392 |
+
@lru_cache(maxsize=10)
|
393 |
+
def _get_english_model(
|
394 |
+
repo_id: str,
|
395 |
+
decoding_method: str,
|
396 |
+
num_active_paths: int,
|
397 |
+
) -> sherpa.OfflineRecognizer:
|
398 |
+
assert repo_id in [
|
399 |
+
"WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02", # noqa
|
400 |
+
"yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04", # noqa
|
401 |
+
"yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19", # noqa
|
402 |
+
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13", # noqa
|
403 |
+
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11", # noqa
|
404 |
+
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14", # noqa
|
405 |
+
"Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16", # noqa
|
406 |
+
"Zengwei/icefall-asr-librispeech-zipformer-2023-05-15", # noqa
|
407 |
+
"Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16", # noqa
|
408 |
+
"videodanchik/icefall-asr-tedlium3-conformer-ctc2",
|
409 |
+
"pkufool/icefall_asr_librispeech_conformer_ctc",
|
410 |
+
"WayneWiser/icefall-asr-librispeech-conformer-ctc2-jit-bpe-500-2022-07-21",
|
411 |
+
], repo_id
|
412 |
+
|
413 |
+
filename = "cpu_jit.pt"
|
414 |
+
if (
|
415 |
+
repo_id
|
416 |
+
== "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11"
|
417 |
+
):
|
418 |
+
filename = "cpu_jit-torch-1.10.0.pt"
|
419 |
+
|
420 |
+
if (
|
421 |
+
repo_id
|
422 |
+
== "WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02"
|
423 |
+
):
|
424 |
+
filename = "cpu_jit-torch-1.10.pt"
|
425 |
+
|
426 |
+
if (
|
427 |
+
repo_id
|
428 |
+
== "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04"
|
429 |
+
):
|
430 |
+
filename = "cpu_jit-epoch-30-avg-4.pt"
|
431 |
+
|
432 |
+
if (
|
433 |
+
repo_id
|
434 |
+
== "yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19"
|
435 |
+
):
|
436 |
+
filename = "cpu_jit-epoch-20-avg-5.pt"
|
437 |
+
|
438 |
+
if repo_id in (
|
439 |
+
"Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16",
|
440 |
+
"Zengwei/icefall-asr-librispeech-zipformer-2023-05-15",
|
441 |
+
"Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16",
|
442 |
+
):
|
443 |
+
filename = "jit_script.pt"
|
444 |
+
|
445 |
+
nn_model = _get_nn_model_filename(
|
446 |
+
repo_id=repo_id,
|
447 |
+
filename=filename,
|
448 |
+
)
|
449 |
+
subfolder = "data/lang_bpe_500"
|
450 |
+
|
451 |
+
if repo_id in (
|
452 |
+
"videodanchik/icefall-asr-tedlium3-conformer-ctc2",
|
453 |
+
"pkufool/icefall_asr_librispeech_conformer_ctc",
|
454 |
+
):
|
455 |
+
subfolder = "data/lang_bpe"
|
456 |
+
|
457 |
+
tokens = _get_token_filename(repo_id=repo_id, subfolder=subfolder)
|
458 |
+
|
459 |
+
feat_config = sherpa.FeatureConfig()
|
460 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
461 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
462 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
463 |
+
|
464 |
+
config = sherpa.OfflineRecognizerConfig(
|
465 |
+
nn_model=nn_model,
|
466 |
+
tokens=tokens,
|
467 |
+
use_gpu=False,
|
468 |
+
feat_config=feat_config,
|
469 |
+
decoding_method=decoding_method,
|
470 |
+
num_active_paths=num_active_paths,
|
471 |
+
)
|
472 |
+
|
473 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
474 |
+
|
475 |
+
return recognizer
|
476 |
+
|
477 |
+
|
478 |
+
@lru_cache(maxsize=10)
|
479 |
+
def _get_wenetspeech_pre_trained_model(
|
480 |
+
repo_id: str,
|
481 |
+
decoding_method: str,
|
482 |
+
num_active_paths: int,
|
483 |
+
):
|
484 |
+
assert repo_id in [
|
485 |
+
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2",
|
486 |
+
], repo_id
|
487 |
+
|
488 |
+
nn_model = _get_nn_model_filename(
|
489 |
+
repo_id=repo_id,
|
490 |
+
filename="cpu_jit_epoch_10_avg_2_torch_1.7.1.pt",
|
491 |
+
)
|
492 |
+
tokens = _get_token_filename(repo_id=repo_id)
|
493 |
+
|
494 |
+
feat_config = sherpa.FeatureConfig()
|
495 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
496 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
497 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
498 |
+
|
499 |
+
config = sherpa.OfflineRecognizerConfig(
|
500 |
+
nn_model=nn_model,
|
501 |
+
tokens=tokens,
|
502 |
+
use_gpu=False,
|
503 |
+
feat_config=feat_config,
|
504 |
+
decoding_method=decoding_method,
|
505 |
+
num_active_paths=num_active_paths,
|
506 |
+
)
|
507 |
+
|
508 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
509 |
+
|
510 |
+
return recognizer
|
511 |
+
|
512 |
+
|
513 |
+
@lru_cache(maxsize=10)
|
514 |
+
def _get_chinese_english_mixed_model(
|
515 |
+
repo_id: str,
|
516 |
+
decoding_method: str,
|
517 |
+
num_active_paths: int,
|
518 |
+
):
|
519 |
+
assert repo_id in [
|
520 |
+
"luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5",
|
521 |
+
"ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh",
|
522 |
+
], repo_id
|
523 |
+
|
524 |
+
if repo_id == "luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5":
|
525 |
+
filename = "cpu_jit.pt"
|
526 |
+
subfolder = "data/lang_char"
|
527 |
+
elif repo_id == "ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh":
|
528 |
+
filename = "cpu_jit-epoch-11-avg-1.pt"
|
529 |
+
subfolder = "data/lang_char_bpe"
|
530 |
+
|
531 |
+
nn_model = _get_nn_model_filename(
|
532 |
+
repo_id=repo_id,
|
533 |
+
filename=filename,
|
534 |
+
)
|
535 |
+
tokens = _get_token_filename(repo_id=repo_id, subfolder=subfolder)
|
536 |
+
|
537 |
+
feat_config = sherpa.FeatureConfig()
|
538 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
539 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
540 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
541 |
+
|
542 |
+
config = sherpa.OfflineRecognizerConfig(
|
543 |
+
nn_model=nn_model,
|
544 |
+
tokens=tokens,
|
545 |
+
use_gpu=False,
|
546 |
+
feat_config=feat_config,
|
547 |
+
decoding_method=decoding_method,
|
548 |
+
num_active_paths=num_active_paths,
|
549 |
+
)
|
550 |
+
|
551 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
552 |
+
|
553 |
+
return recognizer
|
554 |
+
|
555 |
+
|
556 |
+
@lru_cache(maxsize=10)
|
557 |
+
def _get_alimeeting_pre_trained_model(
|
558 |
+
repo_id: str,
|
559 |
+
decoding_method: str,
|
560 |
+
num_active_paths: int,
|
561 |
+
):
|
562 |
+
assert repo_id in [
|
563 |
+
"desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7",
|
564 |
+
"luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2",
|
565 |
+
], repo_id
|
566 |
+
|
567 |
+
if repo_id == "desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7":
|
568 |
+
filename = "cpu_jit.pt"
|
569 |
+
elif repo_id == "luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2":
|
570 |
+
filename = "cpu_jit_torch_1.7.1.pt"
|
571 |
+
|
572 |
+
nn_model = _get_nn_model_filename(
|
573 |
+
repo_id=repo_id,
|
574 |
+
filename=filename,
|
575 |
+
)
|
576 |
+
tokens = _get_token_filename(repo_id=repo_id)
|
577 |
+
|
578 |
+
feat_config = sherpa.FeatureConfig()
|
579 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
580 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
581 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
582 |
+
|
583 |
+
config = sherpa.OfflineRecognizerConfig(
|
584 |
+
nn_model=nn_model,
|
585 |
+
tokens=tokens,
|
586 |
+
use_gpu=False,
|
587 |
+
feat_config=feat_config,
|
588 |
+
decoding_method=decoding_method,
|
589 |
+
num_active_paths=num_active_paths,
|
590 |
+
)
|
591 |
+
|
592 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
593 |
+
|
594 |
+
return recognizer
|
595 |
+
|
596 |
+
|
597 |
+
@lru_cache(maxsize=10)
|
598 |
+
def _get_wenet_model(
|
599 |
+
repo_id: str,
|
600 |
+
decoding_method: str,
|
601 |
+
num_active_paths: int,
|
602 |
+
):
|
603 |
+
assert repo_id in [
|
604 |
+
"csukuangfj/wenet-chinese-model",
|
605 |
+
"csukuangfj/wenet-english-model",
|
606 |
+
], repo_id
|
607 |
+
|
608 |
+
nn_model = _get_nn_model_filename(
|
609 |
+
repo_id=repo_id,
|
610 |
+
filename="final.zip",
|
611 |
+
subfolder=".",
|
612 |
+
)
|
613 |
+
tokens = _get_token_filename(
|
614 |
+
repo_id=repo_id,
|
615 |
+
filename="units.txt",
|
616 |
+
subfolder=".",
|
617 |
+
)
|
618 |
+
|
619 |
+
feat_config = sherpa.FeatureConfig(normalize_samples=False)
|
620 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
621 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
622 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
623 |
+
|
624 |
+
config = sherpa.OfflineRecognizerConfig(
|
625 |
+
nn_model=nn_model,
|
626 |
+
tokens=tokens,
|
627 |
+
use_gpu=False,
|
628 |
+
feat_config=feat_config,
|
629 |
+
decoding_method=decoding_method,
|
630 |
+
num_active_paths=num_active_paths,
|
631 |
+
)
|
632 |
+
|
633 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
634 |
+
|
635 |
+
return recognizer
|
636 |
+
|
637 |
+
|
638 |
+
@lru_cache(maxsize=10)
|
639 |
+
def _get_aidatatang_200zh_pretrained_mode(
|
640 |
+
repo_id: str,
|
641 |
+
decoding_method: str,
|
642 |
+
num_active_paths: int,
|
643 |
+
):
|
644 |
+
assert repo_id in [
|
645 |
+
"luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2",
|
646 |
+
], repo_id
|
647 |
+
|
648 |
+
nn_model = _get_nn_model_filename(
|
649 |
+
repo_id=repo_id,
|
650 |
+
filename="cpu_jit_torch.1.7.1.pt",
|
651 |
+
)
|
652 |
+
tokens = _get_token_filename(repo_id=repo_id)
|
653 |
+
|
654 |
+
feat_config = sherpa.FeatureConfig()
|
655 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
656 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
657 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
658 |
+
|
659 |
+
config = sherpa.OfflineRecognizerConfig(
|
660 |
+
nn_model=nn_model,
|
661 |
+
tokens=tokens,
|
662 |
+
use_gpu=False,
|
663 |
+
feat_config=feat_config,
|
664 |
+
decoding_method=decoding_method,
|
665 |
+
num_active_paths=num_active_paths,
|
666 |
+
)
|
667 |
+
|
668 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
669 |
+
|
670 |
+
return recognizer
|
671 |
+
|
672 |
+
|
673 |
+
@lru_cache(maxsize=10)
|
674 |
+
def _get_tibetan_pre_trained_model(
|
675 |
+
repo_id: str,
|
676 |
+
decoding_method: str,
|
677 |
+
num_active_paths: int,
|
678 |
+
):
|
679 |
+
assert repo_id in [
|
680 |
+
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02",
|
681 |
+
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29",
|
682 |
+
], repo_id
|
683 |
+
|
684 |
+
filename = "cpu_jit.pt"
|
685 |
+
if (
|
686 |
+
repo_id
|
687 |
+
== "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29"
|
688 |
+
):
|
689 |
+
filename = "cpu_jit-epoch-28-avg-23-torch-1.10.0.pt"
|
690 |
+
|
691 |
+
nn_model = _get_nn_model_filename(
|
692 |
+
repo_id=repo_id,
|
693 |
+
filename=filename,
|
694 |
+
)
|
695 |
+
|
696 |
+
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_500")
|
697 |
+
|
698 |
+
feat_config = sherpa.FeatureConfig()
|
699 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
700 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
701 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
702 |
+
|
703 |
+
config = sherpa.OfflineRecognizerConfig(
|
704 |
+
nn_model=nn_model,
|
705 |
+
tokens=tokens,
|
706 |
+
use_gpu=False,
|
707 |
+
feat_config=feat_config,
|
708 |
+
decoding_method=decoding_method,
|
709 |
+
num_active_paths=num_active_paths,
|
710 |
+
)
|
711 |
+
|
712 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
713 |
+
|
714 |
+
return recognizer
|
715 |
+
|
716 |
+
|
717 |
+
@lru_cache(maxsize=10)
|
718 |
+
def _get_arabic_pre_trained_model(
|
719 |
+
repo_id: str,
|
720 |
+
decoding_method: str,
|
721 |
+
num_active_paths: int,
|
722 |
+
):
|
723 |
+
assert repo_id in [
|
724 |
+
"AmirHussein/icefall-asr-mgb2-conformer_ctc-2022-27-06",
|
725 |
+
], repo_id
|
726 |
+
|
727 |
+
nn_model = _get_nn_model_filename(
|
728 |
+
repo_id=repo_id,
|
729 |
+
filename="cpu_jit.pt",
|
730 |
+
)
|
731 |
+
|
732 |
+
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_5000")
|
733 |
+
|
734 |
+
feat_config = sherpa.FeatureConfig()
|
735 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
736 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
737 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
738 |
+
|
739 |
+
config = sherpa.OfflineRecognizerConfig(
|
740 |
+
nn_model=nn_model,
|
741 |
+
tokens=tokens,
|
742 |
+
use_gpu=False,
|
743 |
+
feat_config=feat_config,
|
744 |
+
decoding_method=decoding_method,
|
745 |
+
num_active_paths=num_active_paths,
|
746 |
+
)
|
747 |
+
|
748 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
749 |
+
|
750 |
+
return recognizer
|
751 |
+
|
752 |
+
|
753 |
+
@lru_cache(maxsize=10)
|
754 |
+
def _get_german_pre_trained_model(
|
755 |
+
repo_id: str,
|
756 |
+
decoding_method: str,
|
757 |
+
num_active_paths: int,
|
758 |
+
):
|
759 |
+
assert repo_id in [
|
760 |
+
"csukuangfj/wav2vec2.0-torchaudio",
|
761 |
+
], repo_id
|
762 |
+
|
763 |
+
nn_model = _get_nn_model_filename(
|
764 |
+
repo_id=repo_id,
|
765 |
+
filename="voxpopuli_asr_base_10k_de.pt",
|
766 |
+
subfolder=".",
|
767 |
+
)
|
768 |
+
|
769 |
+
tokens = _get_token_filename(
|
770 |
+
repo_id=repo_id,
|
771 |
+
filename="tokens-de.txt",
|
772 |
+
subfolder=".",
|
773 |
+
)
|
774 |
+
|
775 |
+
config = sherpa.OfflineRecognizerConfig(
|
776 |
+
nn_model=nn_model,
|
777 |
+
tokens=tokens,
|
778 |
+
use_gpu=False,
|
779 |
+
decoding_method=decoding_method,
|
780 |
+
num_active_paths=num_active_paths,
|
781 |
+
)
|
782 |
+
|
783 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
784 |
+
|
785 |
+
return recognizer
|
786 |
+
|
787 |
+
|
788 |
+
@lru_cache(maxsize=10)
|
789 |
+
def _get_french_pre_trained_model(
|
790 |
+
repo_id: str,
|
791 |
+
decoding_method: str,
|
792 |
+
num_active_paths: int,
|
793 |
+
):
|
794 |
+
assert repo_id in [
|
795 |
+
"shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14",
|
796 |
+
], repo_id
|
797 |
+
|
798 |
+
encoder_model = _get_nn_model_filename(
|
799 |
+
repo_id=repo_id,
|
800 |
+
filename="encoder-epoch-29-avg-9-with-averaged-model.onnx",
|
801 |
+
subfolder=".",
|
802 |
+
)
|
803 |
+
|
804 |
+
decoder_model = _get_nn_model_filename(
|
805 |
+
repo_id=repo_id,
|
806 |
+
filename="decoder-epoch-29-avg-9-with-averaged-model.onnx",
|
807 |
+
subfolder=".",
|
808 |
+
)
|
809 |
+
|
810 |
+
joiner_model = _get_nn_model_filename(
|
811 |
+
repo_id=repo_id,
|
812 |
+
filename="joiner-epoch-29-avg-9-with-averaged-model.onnx",
|
813 |
+
subfolder=".",
|
814 |
+
)
|
815 |
+
|
816 |
+
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
|
817 |
+
|
818 |
+
recognizer = sherpa_onnx.OnlineRecognizer.from_transducer(
|
819 |
+
tokens=tokens,
|
820 |
+
encoder=encoder_model,
|
821 |
+
decoder=decoder_model,
|
822 |
+
joiner=joiner_model,
|
823 |
+
num_threads=2,
|
824 |
+
sample_rate=16000,
|
825 |
+
feature_dim=80,
|
826 |
+
decoding_method=decoding_method,
|
827 |
+
max_active_paths=num_active_paths,
|
828 |
+
)
|
829 |
+
|
830 |
+
return recognizer
|
831 |
+
|
832 |
+
|
833 |
+
@lru_cache(maxsize=10)
|
834 |
+
def _get_japanese_pre_trained_model(
|
835 |
+
repo_id: str,
|
836 |
+
decoding_method: str,
|
837 |
+
num_active_paths: int,
|
838 |
+
) -> sherpa.OnlineRecognizer:
|
839 |
+
repo_id, kind = repo_id.rsplit("-", maxsplit=1)
|
840 |
+
|
841 |
+
assert repo_id in [
|
842 |
+
"TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208"
|
843 |
+
], repo_id
|
844 |
+
assert kind in ("fluent", "disfluent"), kind
|
845 |
+
|
846 |
+
encoder_model = _get_nn_model_filename(
|
847 |
+
repo_id=repo_id, filename="encoder_jit_trace.pt", subfolder=f"exp_{kind}"
|
848 |
+
)
|
849 |
+
|
850 |
+
decoder_model = _get_nn_model_filename(
|
851 |
+
repo_id=repo_id, filename="decoder_jit_trace.pt", subfolder=f"exp_{kind}"
|
852 |
+
)
|
853 |
+
|
854 |
+
joiner_model = _get_nn_model_filename(
|
855 |
+
repo_id=repo_id, filename="joiner_jit_trace.pt", subfolder=f"exp_{kind}"
|
856 |
+
)
|
857 |
+
|
858 |
+
tokens = _get_token_filename(repo_id=repo_id)
|
859 |
+
|
860 |
+
feat_config = sherpa.FeatureConfig()
|
861 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
862 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
863 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
864 |
+
|
865 |
+
config = sherpa.OnlineRecognizerConfig(
|
866 |
+
nn_model="",
|
867 |
+
encoder_model=encoder_model,
|
868 |
+
decoder_model=decoder_model,
|
869 |
+
joiner_model=joiner_model,
|
870 |
+
tokens=tokens,
|
871 |
+
use_gpu=False,
|
872 |
+
feat_config=feat_config,
|
873 |
+
decoding_method=decoding_method,
|
874 |
+
num_active_paths=num_active_paths,
|
875 |
+
chunk_size=32,
|
876 |
+
)
|
877 |
+
|
878 |
+
recognizer = sherpa.OnlineRecognizer(config)
|
879 |
+
|
880 |
+
return recognizer
|
881 |
+
|
882 |
+
|
883 |
+
@lru_cache(maxsize=10)
|
884 |
+
def _get_paraformer_zh_pre_trained_model(
|
885 |
+
repo_id: str,
|
886 |
+
decoding_method: str,
|
887 |
+
num_active_paths: int,
|
888 |
+
) -> sherpa_onnx.OfflineRecognizer:
|
889 |
+
assert repo_id in [
|
890 |
+
"csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28",
|
891 |
+
], repo_id
|
892 |
+
|
893 |
+
nn_model = _get_nn_model_filename(
|
894 |
+
repo_id=repo_id,
|
895 |
+
filename="model.onnx",
|
896 |
+
subfolder=".",
|
897 |
+
)
|
898 |
+
|
899 |
+
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
|
900 |
+
|
901 |
+
recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
|
902 |
+
paraformer=nn_model,
|
903 |
+
tokens=tokens,
|
904 |
+
num_threads=2,
|
905 |
+
sample_rate=sample_rate,
|
906 |
+
feature_dim=80,
|
907 |
+
decoding_method="greedy_search",
|
908 |
+
debug=False,
|
909 |
+
)
|
910 |
+
|
911 |
+
return recognizer
|
912 |
+
|
913 |
+
|
914 |
+
chinese_models = {
|
915 |
+
"csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28": _get_paraformer_zh_pre_trained_model,
|
916 |
+
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2": _get_wenetspeech_pre_trained_model, # noqa
|
917 |
+
"desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7": _get_alimeeting_pre_trained_model,
|
918 |
+
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12": _get_aishell2_pretrained_model, # noqa
|
919 |
+
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12": _get_aishell2_pretrained_model, # noqa
|
920 |
+
"luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2": _get_aidatatang_200zh_pretrained_mode, # noqa
|
921 |
+
"luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2": _get_alimeeting_pre_trained_model, # noqa
|
922 |
+
"csukuangfj/wenet-chinese-model": _get_wenet_model,
|
923 |
+
# "csukuangfj/icefall-asr-wenetspeech-lstm-transducer-stateless-2022-10-14": _get_lstm_transducer_model,
|
924 |
+
}
|
925 |
+
|
926 |
+
english_models = {
|
927 |
+
"whisper-tiny.en": _get_whisper_model,
|
928 |
+
"whisper-base.en": _get_whisper_model,
|
929 |
+
"whisper-small.en": _get_whisper_model,
|
930 |
+
# "whisper-medium.en": _get_whisper_model,
|
931 |
+
"wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2": _get_gigaspeech_pre_trained_model, # noqa
|
932 |
+
"yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04": _get_english_model, # noqa
|
933 |
+
"yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19": _get_english_model, # noqa
|
934 |
+
"WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02": _get_english_model, # noqa
|
935 |
+
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14": _get_english_model, # noqa
|
936 |
+
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11": _get_english_model, # noqa
|
937 |
+
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13": _get_english_model, # noqa
|
938 |
+
"Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16": _get_english_model, # noqa
|
939 |
+
"Zengwei/icefall-asr-librispeech-zipformer-2023-05-15": _get_english_model, # noqa
|
940 |
+
"Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16": _get_english_model, # noqa
|
941 |
+
"videodanchik/icefall-asr-tedlium3-conformer-ctc2": _get_english_model,
|
942 |
+
"pkufool/icefall_asr_librispeech_conformer_ctc": _get_english_model,
|
943 |
+
"WayneWiser/icefall-asr-librispeech-conformer-ctc2-jit-bpe-500-2022-07-21": _get_english_model,
|
944 |
+
"csukuangfj/wenet-english-model": _get_wenet_model,
|
945 |
+
}
|
946 |
+
|
947 |
+
chinese_english_mixed_models = {
|
948 |
+
"ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh": _get_chinese_english_mixed_model,
|
949 |
+
"luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5": _get_chinese_english_mixed_model, # noqa
|
950 |
+
}
|
951 |
+
|
952 |
+
tibetan_models = {
|
953 |
+
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02": _get_tibetan_pre_trained_model, # noqa
|
954 |
+
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29": _get_tibetan_pre_trained_model, # noqa
|
955 |
+
}
|
956 |
+
|
957 |
+
arabic_models = {
|
958 |
+
"AmirHussein/icefall-asr-mgb2-conformer_ctc-2022-27-06": _get_arabic_pre_trained_model, # noqa
|
959 |
+
}
|
960 |
+
|
961 |
+
german_models = {
|
962 |
+
"csukuangfj/wav2vec2.0-torchaudio": _get_german_pre_trained_model,
|
963 |
+
}
|
964 |
+
|
965 |
+
french_models = {
|
966 |
+
"shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14": _get_french_pre_trained_model,
|
967 |
+
}
|
968 |
+
|
969 |
+
japanese_models = {
|
970 |
+
"TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208-fluent": _get_japanese_pre_trained_model,
|
971 |
+
"TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208-disfluent": _get_japanese_pre_trained_model,
|
972 |
+
}
|
973 |
+
|
974 |
+
russian_models = {
|
975 |
+
"alphacep/vosk-model-ru": _get_russian_pre_trained_model,
|
976 |
+
"alphacep/vosk-model-small-ru": _get_russian_pre_trained_model,
|
977 |
+
}
|
978 |
+
|
979 |
+
all_models = {
|
980 |
+
**chinese_models,
|
981 |
+
**english_models,
|
982 |
+
**chinese_english_mixed_models,
|
983 |
+
# **japanese_models,
|
984 |
+
**tibetan_models,
|
985 |
+
**arabic_models,
|
986 |
+
**german_models,
|
987 |
+
**french_models,
|
988 |
+
**russian_models,
|
989 |
+
}
|
990 |
+
|
991 |
+
language_to_models = {
|
992 |
+
"Chinese": list(chinese_models.keys()),
|
993 |
+
"English": list(english_models.keys()),
|
994 |
+
"Chinese+English": list(chinese_english_mixed_models.keys()),
|
995 |
+
# "Japanese": list(japanese_models.keys()),
|
996 |
+
"Tibetan": list(tibetan_models.keys()),
|
997 |
+
"Arabic": list(arabic_models.keys()),
|
998 |
+
"German": list(german_models.keys()),
|
999 |
+
"French": list(french_models.keys()),
|
1000 |
+
"Russian": list(russian_models.keys()),
|
1001 |
+
}
|
requirements (1).txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
https://download.pytorch.org/whl/cpu/torch-1.13.1%2Bcpu-cp38-cp38-linux_x86_64.whl
|
2 |
+
https://download.pytorch.org/whl/cpu/torchaudio-0.13.1%2Bcpu-cp38-cp38-linux_x86_64.whl
|
3 |
+
|
4 |
+
https://huggingface.co/csukuangfj/wheels/resolve/main/2023-01-30/k2-1.23.4.dev20230130%2Bcpu.torch1.13.1-cp38-cp38-linux_x86_64.whl
|
5 |
+
https://huggingface.co/csukuangfj/wheels/resolve/main/2023-01-30/k2_sherpa-1.1-cp38-cp38-linux_x86_64.whl
|
6 |
+
https://huggingface.co/csukuangfj/wheels/resolve/main/2023-01-30/kaldifeat-1.22-cp38-cp38-linux_x86_64.whl
|
7 |
+
|
8 |
+
sentencepiece>=0.1.96
|
9 |
+
numpy
|
10 |
+
|
11 |
+
huggingface_hub
|
12 |
+
sherpa-onnx>=1.7.0
|