Spaces:
Sleeping
Sleeping
File size: 7,766 Bytes
81f0a03 de9fbbf 81f0a03 de9fbbf d6ee3f8 81f0a03 de9fbbf 81f0a03 953f193 81f0a03 cf72988 81f0a03 de9fbbf cf72988 de9fbbf 953f193 81f0a03 953f193 81f0a03 953f193 81f0a03 cf72988 de9fbbf 953f193 de9fbbf b6e8571 953f193 b6e8571 de9fbbf b6e8571 de9fbbf b6e8571 de9fbbf 953f193 de9fbbf 81f0a03 953f193 81f0a03 b6e8571 953f193 81f0a03 953f193 81f0a03 953f193 81f0a03 9fc1785 81f0a03 9fc1785 81f0a03 fda8b87 81f0a03 fda8b87 81f0a03 9fc1785 81f0a03 b6e8571 81f0a03 de9fbbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
import numpy as np
from resources.data import fixed_messages, topic_lists
from utils.ui import add_candidate_message, add_interviewer_message
def get_problem_solving_ui(llm, tts, stt, default_audio_params, audio_output, name="Coding", interview_type="coding"):
with gr.Tab(name, render=False, elem_id=f"{interview_type}_tab") as problem_tab:
chat_history = gr.State([])
previous_code = gr.State("")
started_coding = gr.State(False)
interview_type = gr.State(interview_type)
with gr.Accordion("Settings") as init_acc:
with gr.Row():
with gr.Column():
gr.Markdown("##### Problem settings")
with gr.Row():
gr.Markdown("Difficulty")
difficulty_select = gr.Dropdown(
label="Select difficulty",
choices=["Easy", "Medium", "Hard"],
value="Medium",
container=False,
allow_custom_value=True,
elem_id="difficulty_select",
)
with gr.Row():
topics = topic_lists[interview_type.value].copy()
np.random.shuffle(topics)
gr.Markdown("Topic (can type custom value)")
topic_select = gr.Dropdown(
label="Select topic",
choices=topics,
value=topics[0],
container=False,
allow_custom_value=True,
elem_id="topic_select",
)
with gr.Column(scale=2):
requirements = gr.Textbox(
label="Requirements", placeholder="Specify additional requirements", lines=5, elem_id="requirements"
)
start_btn = gr.Button("Generate a problem", elem_id="start_btn")
with gr.Accordion("Problem statement", open=True) as problem_acc:
description = gr.Markdown(elem_id="problem_description")
with gr.Accordion("Solution", open=False) as solution_acc:
with gr.Row() as content:
with gr.Column(scale=2):
if interview_type.value == "coding":
code = gr.Code(
label="Please write your code here. You can use any language, but only Python syntax highlighting is available.",
language="python",
lines=46,
elem_id="code",
)
elif interview_type.value == "sql":
code = gr.Code(
label="Please write your query here.",
language="sql",
lines=46,
elem_id="code",
)
else:
code = gr.Code(
label="Please write any notes for your solution here.",
language=None,
lines=46,
elem_id="code",
)
with gr.Column(scale=1):
end_btn = gr.Button("Finish the interview", interactive=False, variant="stop", elem_id="end_btn")
chat = gr.Chatbot(label="Chat", show_label=False, show_share_button=False, elem_id="chat")
message = gr.Textbox(
label="Message",
show_label=False,
lines=3,
max_lines=3,
interactive=True,
container=False,
elem_id="message",
)
send_btn = gr.Button("Send", interactive=False, elem_id="send_btn")
audio_input = gr.Audio(interactive=False, **default_audio_params, elem_id="audio_input")
audio_buffer = gr.State(np.array([], dtype=np.int16))
transcript = gr.State({"words": [], "not_confirmed": 0, "last_cutoff": 0, "text": ""})
with gr.Accordion("Feedback", open=True) as feedback_acc:
feedback = gr.Markdown(elem_id="feedback")
start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).success(
fn=lambda: True, outputs=[started_coding]
).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
fn=lambda: (gr.update(open=False), gr.update(interactive=False)), outputs=[init_acc, start_btn]
).success(
fn=llm.get_problem,
inputs=[requirements, difficulty_select, topic_select, interview_type],
outputs=[description],
scroll_to_output=True,
).success(
fn=llm.init_bot, inputs=[description, interview_type], outputs=[chat_history]
).success(
fn=lambda: (gr.update(open=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)),
outputs=[solution_acc, end_btn, audio_input, send_btn],
)
end_btn.click(
fn=add_interviewer_message(fixed_messages["end"]),
inputs=[chat],
outputs=[chat],
).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
fn=lambda: (
gr.update(open=False),
gr.update(interactive=False),
gr.update(open=False),
gr.update(interactive=False),
gr.update(interactive=False),
),
outputs=[solution_acc, end_btn, problem_acc, audio_input, send_btn],
).success(
fn=llm.end_interview, inputs=[description, chat_history, interview_type], outputs=[feedback]
)
send_btn.click(fn=add_candidate_message, inputs=[message, chat], outputs=[chat]).success(
fn=lambda: None, outputs=[message]
).success(
fn=llm.send_request,
inputs=[code, previous_code, chat_history, chat],
outputs=[chat_history, chat, previous_code],
).success(
fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]
).success(
fn=lambda: np.array([], dtype=np.int16), outputs=[audio_buffer]
).success(
fn=lambda: {"words": [], "not_confirmed": 0, "last_cutoff": 0, "text": ""}, outputs=[transcript]
)
if stt.streaming:
audio_input.stream(
stt.process_audio_chunk,
inputs=[audio_input, audio_buffer, transcript],
outputs=[transcript, audio_buffer, message],
show_progress="hidden",
)
audio_input.stop_recording(fn=lambda: gr.update(interactive=True), outputs=[send_btn])
else:
audio_input.stop_recording(fn=stt.speech_to_text_full, inputs=[audio_input], outputs=[message]).success(
fn=lambda: gr.update(interactive=True), outputs=[send_btn]
).success(fn=lambda: None, outputs=[audio_input])
# TODO: add proper messages and clean up when changing the interview type
# problem_tab.select(fn=add_interviewer_message(fixed_messages["intro"]), inputs=[chat, started_coding], outputs=[chat]).success(
# fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]
# )
return problem_tab
|