File size: 7,766 Bytes
81f0a03
 
 
de9fbbf
81f0a03
 
 
de9fbbf
d6ee3f8
81f0a03
 
 
de9fbbf
81f0a03
 
 
 
 
 
 
 
 
 
 
 
953f193
81f0a03
 
cf72988
 
81f0a03
 
de9fbbf
cf72988
 
de9fbbf
 
953f193
81f0a03
 
953f193
 
 
 
81f0a03
 
953f193
81f0a03
 
 
cf72988
de9fbbf
 
 
 
953f193
de9fbbf
b6e8571
 
 
 
 
953f193
b6e8571
de9fbbf
b6e8571
de9fbbf
b6e8571
de9fbbf
953f193
de9fbbf
81f0a03
953f193
 
81f0a03
 
 
 
 
b6e8571
 
953f193
81f0a03
953f193
 
81f0a03
 
 
 
 
953f193
81f0a03
 
 
 
 
 
 
9fc1785
81f0a03
 
 
9fc1785
81f0a03
fda8b87
 
81f0a03
 
 
 
 
 
 
fda8b87
 
 
 
 
 
 
 
81f0a03
9fc1785
81f0a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6e8571
 
 
 
81f0a03
de9fbbf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
import numpy as np

from resources.data import fixed_messages, topic_lists
from utils.ui import add_candidate_message, add_interviewer_message


def get_problem_solving_ui(llm, tts, stt, default_audio_params, audio_output, name="Coding", interview_type="coding"):
    with gr.Tab(name, render=False, elem_id=f"{interview_type}_tab") as problem_tab:
        chat_history = gr.State([])
        previous_code = gr.State("")
        started_coding = gr.State(False)
        interview_type = gr.State(interview_type)
        with gr.Accordion("Settings") as init_acc:
            with gr.Row():
                with gr.Column():
                    gr.Markdown("##### Problem settings")
                    with gr.Row():
                        gr.Markdown("Difficulty")
                        difficulty_select = gr.Dropdown(
                            label="Select difficulty",
                            choices=["Easy", "Medium", "Hard"],
                            value="Medium",
                            container=False,
                            allow_custom_value=True,
                            elem_id="difficulty_select",
                        )
                    with gr.Row():
                        topics = topic_lists[interview_type.value].copy()
                        np.random.shuffle(topics)
                        gr.Markdown("Topic (can type custom value)")
                        topic_select = gr.Dropdown(
                            label="Select topic",
                            choices=topics,
                            value=topics[0],
                            container=False,
                            allow_custom_value=True,
                            elem_id="topic_select",
                        )
                with gr.Column(scale=2):
                    requirements = gr.Textbox(
                        label="Requirements", placeholder="Specify additional requirements", lines=5, elem_id="requirements"
                    )
                    start_btn = gr.Button("Generate a problem", elem_id="start_btn")

        with gr.Accordion("Problem statement", open=True) as problem_acc:
            description = gr.Markdown(elem_id="problem_description")
        with gr.Accordion("Solution", open=False) as solution_acc:
            with gr.Row() as content:
                with gr.Column(scale=2):
                    if interview_type.value == "coding":
                        code = gr.Code(
                            label="Please write your code here. You can use any language, but only Python syntax highlighting is available.",
                            language="python",
                            lines=46,
                            elem_id="code",
                        )
                    elif interview_type.value == "sql":
                        code = gr.Code(
                            label="Please write your query here.",
                            language="sql",
                            lines=46,
                            elem_id="code",
                        )
                    else:
                        code = gr.Code(
                            label="Please write any notes for your solution here.",
                            language=None,
                            lines=46,
                            elem_id="code",
                        )
                with gr.Column(scale=1):
                    end_btn = gr.Button("Finish the interview", interactive=False, variant="stop", elem_id="end_btn")
                    chat = gr.Chatbot(label="Chat", show_label=False, show_share_button=False, elem_id="chat")
                    message = gr.Textbox(
                        label="Message",
                        show_label=False,
                        lines=3,
                        max_lines=3,
                        interactive=True,
                        container=False,
                        elem_id="message",
                    )
                    send_btn = gr.Button("Send", interactive=False, elem_id="send_btn")
                    audio_input = gr.Audio(interactive=False, **default_audio_params, elem_id="audio_input")

                    audio_buffer = gr.State(np.array([], dtype=np.int16))
                    transcript = gr.State({"words": [], "not_confirmed": 0, "last_cutoff": 0, "text": ""})

        with gr.Accordion("Feedback", open=True) as feedback_acc:
            feedback = gr.Markdown(elem_id="feedback")

        start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).success(
            fn=lambda: True, outputs=[started_coding]
        ).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
            fn=lambda: (gr.update(open=False), gr.update(interactive=False)), outputs=[init_acc, start_btn]
        ).success(
            fn=llm.get_problem,
            inputs=[requirements, difficulty_select, topic_select, interview_type],
            outputs=[description],
            scroll_to_output=True,
        ).success(
            fn=llm.init_bot, inputs=[description, interview_type], outputs=[chat_history]
        ).success(
            fn=lambda: (gr.update(open=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)),
            outputs=[solution_acc, end_btn, audio_input, send_btn],
        )

        end_btn.click(
            fn=add_interviewer_message(fixed_messages["end"]),
            inputs=[chat],
            outputs=[chat],
        ).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
            fn=lambda: (
                gr.update(open=False),
                gr.update(interactive=False),
                gr.update(open=False),
                gr.update(interactive=False),
                gr.update(interactive=False),
            ),
            outputs=[solution_acc, end_btn, problem_acc, audio_input, send_btn],
        ).success(
            fn=llm.end_interview, inputs=[description, chat_history, interview_type], outputs=[feedback]
        )

        send_btn.click(fn=add_candidate_message, inputs=[message, chat], outputs=[chat]).success(
            fn=lambda: None, outputs=[message]
        ).success(
            fn=llm.send_request,
            inputs=[code, previous_code, chat_history, chat],
            outputs=[chat_history, chat, previous_code],
        ).success(
            fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]
        ).success(
            fn=lambda: np.array([], dtype=np.int16), outputs=[audio_buffer]
        ).success(
            fn=lambda: {"words": [], "not_confirmed": 0, "last_cutoff": 0, "text": ""}, outputs=[transcript]
        )

        if stt.streaming:
            audio_input.stream(
                stt.process_audio_chunk,
                inputs=[audio_input, audio_buffer, transcript],
                outputs=[transcript, audio_buffer, message],
                show_progress="hidden",
            )
            audio_input.stop_recording(fn=lambda: gr.update(interactive=True), outputs=[send_btn])
        else:
            audio_input.stop_recording(fn=stt.speech_to_text_full, inputs=[audio_input], outputs=[message]).success(
                fn=lambda: gr.update(interactive=True), outputs=[send_btn]
            ).success(fn=lambda: None, outputs=[audio_input])

        # TODO: add proper messages and clean up when changing the interview type
        # problem_tab.select(fn=add_interviewer_message(fixed_messages["intro"]), inputs=[chat, started_coding], outputs=[chat]).success(
        #     fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]
        # )

    return problem_tab