import os from openai import OpenAI import anthropic from utils.errors import APIError from typing import List, Dict, Generator, Optional, Tuple, Any import logging class PromptManager: def __init__(self, prompts: Dict[str, str]): """ Initialize the PromptManager. Args: prompts (Dict[str, str]): A dictionary of prompt keys and their corresponding text. """ self.prompts: Dict[str, str] = prompts self.limit: Optional[str] = os.getenv("DEMO_WORD_LIMIT") def add_limit(self, prompt: str) -> str: """ Add word limit to the prompt if specified in the environment variables. Args: prompt (str): The original prompt. Returns: str: The prompt with added word limit if applicable. """ if self.limit: prompt += f" Keep your responses very short and simple, no more than {self.limit} words." return prompt def get_system_prompt(self, key: str) -> str: """ Retrieve and limit a system prompt by its key. Args: key (str): The key for the desired prompt. Returns: str: The retrieved prompt with added word limit if applicable. Raises: KeyError: If the key is not found in the prompts dictionary. """ prompt = self.prompts[key] return self.add_limit(prompt) def get_problem_requirements_prompt( self, type: str, difficulty: Optional[str] = None, topic: Optional[str] = None, requirements: Optional[str] = None ) -> str: """ Create a problem requirements prompt with optional parameters. Args: type (str): The type of problem. difficulty (Optional[str]): The difficulty level of the problem. topic (Optional[str]): The topic of the problem. requirements (Optional[str]): Additional requirements for the problem. Returns: str: The constructed problem requirements prompt. """ prompt = f"Create a {type} problem. Difficulty: {difficulty}. Topic: {topic}. Additional requirements: {requirements}." return self.add_limit(prompt) class LLMManager: def __init__(self, config: Any, prompts: Dict[str, str]): """ Initialize the LLMManager. Args: config (Any): Configuration object containing LLM settings. prompts (Dict[str, str]): A dictionary of prompts for the PromptManager. """ self.config = config self.llm_type = config.llm.type if self.llm_type == "ANTHROPIC_API": self.client = anthropic.Anthropic(api_key=config.llm.key) else: # all other API types suppose to support OpenAI format self.client = OpenAI(base_url=config.llm.url, api_key=config.llm.key) self.prompt_manager = PromptManager(prompts) self.status = self.test_llm(stream=False) self.streaming = self.test_llm(stream=True) if self.status else False def get_text(self, messages: List[Dict[str, str]], stream: Optional[bool] = None) -> Generator[str, None, None]: """ Generate text from the LLM, optionally streaming the response. Args: messages (List[Dict[str, str]]): List of message dictionaries. stream (Optional[bool]): Whether to stream the response. Defaults to self.streaming if not provided. Yields: str: Generated text chunks. Raises: APIError: If an unexpected error occurs during text generation. """ if stream is None: stream = self.streaming try: if self.llm_type == "OPENAI_API": yield from self._get_text_openai(messages, stream) elif self.llm_type == "ANTHROPIC_API": yield from self._get_text_anthropic(messages, stream) except Exception as e: raise APIError(f"LLM Get Text Error: Unexpected error: {e}") def _get_text_openai(self, messages: List[Dict[str, str]], stream: bool) -> Generator[str, None, None]: """ Generate text using OpenAI API. Args: messages (List[Dict[str, str]]): List of message dictionaries. stream (bool): Whether to stream the response. Yields: str: Generated text chunks. """ if not stream: response = self.client.chat.completions.create(model=self.config.llm.name, messages=messages, temperature=1, max_tokens=2000) yield response.choices[0].message.content.strip() else: response = self.client.chat.completions.create( model=self.config.llm.name, messages=messages, temperature=1, stream=True, max_tokens=2000 ) for chunk in response: if chunk.choices[0].delta.content: yield chunk.choices[0].delta.content def _get_text_anthropic(self, messages: List[Dict[str, str]], stream: bool) -> Generator[str, None, None]: """ Generate text using Anthropic API. Args: messages (List[Dict[str, str]]): List of message dictionaries. stream (bool): Whether to stream the response. Yields: str: Generated text chunks. """ system_message, consolidated_messages = self._prepare_anthropic_messages(messages) if not stream: response = self.client.messages.create( model=self.config.llm.name, max_tokens=2000, temperature=1, system=system_message, messages=consolidated_messages ) yield response.content[0].text else: with self.client.messages.stream( model=self.config.llm.name, max_tokens=2000, temperature=1, system=system_message, messages=consolidated_messages ) as stream: yield from stream.text_stream def _prepare_anthropic_messages(self, messages: List[Dict[str, str]]) -> Tuple[Optional[str], List[Dict[str, str]]]: """ Prepare messages for Anthropic API format. Args: messages (List[Dict[str, str]]): Original messages in OpenAI format. Returns: Tuple[Optional[str], List[Dict[str, str]]]: Tuple containing system message and consolidated messages. """ system_message = None consolidated_messages = [] for message in messages: if message["role"] == "system": if system_message is None: system_message = message["content"] else: system_message += "\n" + message["content"] else: if consolidated_messages and consolidated_messages[-1]["role"] == message["role"]: consolidated_messages[-1]["content"] += "\n" + message["content"] else: consolidated_messages.append(message.copy()) return system_message, consolidated_messages def test_llm(self, stream: bool = False) -> bool: """ Test the LLM connection with or without streaming. Args: stream (bool): Whether to test streaming functionality. Returns: bool: True if the test is successful, False otherwise. """ try: test_messages = [ {"role": "system", "content": "You just help me test the connection."}, {"role": "user", "content": "Hi!"}, {"role": "user", "content": "Ping!"}, ] list(self.get_text(test_messages, stream=stream)) return True except APIError as e: logging.error(f"LLM test failed: {e}") return False except Exception as e: logging.error(f"Unexpected error during LLM test: {e}") return False def init_bot(self, problem: str, interview_type: str = "coding") -> List[Dict[str, str]]: """ Initialize the bot with a system prompt and problem description. Args: problem (str): The problem description. interview_type (str): The type of interview. Defaults to "coding". Returns: List[Dict[str, str]]: Initial messages for the bot. """ system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_interviewer_prompt") return [{"role": "system", "content": f"{system_prompt}\nThe candidate is solving the following problem:\n {problem}"}] def get_problem_prepare_messages(self, requirements: str, difficulty: str, topic: str, interview_type: str) -> List[Dict[str, str]]: """ Prepare messages for generating a problem based on given requirements. Args: requirements (str): Specific requirements for the problem. difficulty (str): Difficulty level of the problem. topic (str): Topic of the problem. interview_type (str): Type of interview. Returns: List[Dict[str, str]]: Prepared messages for problem generation. """ system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_problem_generation_prompt") full_prompt = self.prompt_manager.get_problem_requirements_prompt(interview_type, difficulty, topic, requirements) return [ {"role": "system", "content": system_prompt}, {"role": "user", "content": full_prompt}, ] def get_problem(self, requirements: str, difficulty: str, topic: str, interview_type: str) -> Generator[str, None, None]: """ Get a problem from the LLM based on the given requirements, difficulty, and topic. Args: requirements (str): Specific requirements for the problem. difficulty (str): Difficulty level of the problem. topic (str): Topic of the problem. interview_type (str): Type of interview. Yields: str: Incrementally generated problem statement. """ messages = self.get_problem_prepare_messages(requirements, difficulty, topic, interview_type) problem = "" for text in self.get_text(messages): problem += text yield problem def update_chat_history( self, code: str, previous_code: str, chat_history: List[Dict[str, str]], chat_display: List[List[Optional[str]]] ) -> List[Dict[str, str]]: """ Update chat history with the latest user message and code. Args: code (str): Current code. previous_code (str): Previous code. chat_history (List[Dict[str, str]]): Current chat history. chat_display (List[List[Optional[str]]]): Current chat display. Returns: List[Dict[str, str]]: Updated chat history. """ message = chat_display[-1][0] if not message: message = "" if code != previous_code: message += "\nMY NOTES AND CODE:\n" + code chat_history.append({"role": "user", "content": message}) return chat_history def end_interview_prepare_messages( self, problem_description: str, chat_history: List[Dict[str, str]], interview_type: str ) -> List[Dict[str, str]]: """ Prepare messages to end the interview and generate feedback. Args: problem_description (str): The original problem description. chat_history (List[Dict[str, str]]): The chat history. interview_type (str): The type of interview. Returns: List[Dict[str, str]]: Prepared messages for generating feedback. """ transcript = [f"{message['role'].capitalize()}: {message['content']}" for message in chat_history[1:]] system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_grading_feedback_prompt") return [ {"role": "system", "content": system_prompt}, {"role": "user", "content": f"The original problem to solve: {problem_description}"}, {"role": "user", "content": "\n\n".join(transcript)}, {"role": "user", "content": "Grade the interview based on the transcript provided and give feedback."}, ] def end_interview( self, problem_description: str, chat_history: List[Dict[str, str]], interview_type: str = "coding" ) -> Generator[str, None, None]: """ End the interview and get feedback from the LLM. Args: problem_description (str): The original problem description. chat_history (List[Dict[str, str]]): The chat history. interview_type (str): The type of interview. Defaults to "coding". Yields: str: Incrementally generated feedback. """ if len(chat_history) <= 2: yield "No interview history available" return messages = self.end_interview_prepare_messages(problem_description, chat_history, interview_type) feedback = "" for text in self.get_text(messages): feedback += text yield feedback