import gradio as gr import copy import random import os import requests import time import sys from huggingface_hub import snapshot_download from llama_cpp import Llama SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им." SYSTEM_TOKEN = 1788 USER_TOKEN = 1404 BOT_TOKEN = 9225 LINEBREAK_TOKEN = 13 ROLE_TOKENS = { "user": USER_TOKEN, "bot": BOT_TOKEN, "system": SYSTEM_TOKEN } def get_message_tokens(model, role, content): message_tokens = model.tokenize(content.encode("utf-8")) message_tokens.insert(1, ROLE_TOKENS[role]) message_tokens.insert(2, LINEBREAK_TOKEN) message_tokens.append(model.token_eos()) return message_tokens def get_system_tokens(model): system_message = {"role": "system", "content": SYSTEM_PROMPT} return get_message_tokens(model, **system_message) repo_name = "IlyaGusev/saiga2_13b_gguf" model_name = "ggml-model-q4_K.gguf" snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name) model = Llama( model_path=model_name, n_ctx=2000, n_parts=1, ) max_new_tokens = 1500 def user(message, history): new_history = history + [[message, None]] return "", new_history def bot( history, system_prompt, top_p, top_k, temp ): tokens = get_system_tokens(model)[:] tokens.append(LINEBREAK_TOKEN) for user_message, bot_message in history[:-1]: message_tokens = get_message_tokens(model=model, role="user", content=user_message) tokens.extend(message_tokens) if bot_message: message_tokens = get_message_tokens(model=model, role="bot", content=bot_message) tokens.extend(message_tokens) last_user_message = history[-1][0] message_tokens = get_message_tokens(model=model, role="user", content=last_user_message) tokens.extend(message_tokens) role_tokens = [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN] tokens.extend(role_tokens) generator = model.generate( tokens, top_k=top_k, top_p=top_p, temp=temp ) partial_text = "" for i, token in enumerate(generator): if token == model.token_eos() or (max_new_tokens is not None and i >= max_new_tokens): break partial_text += model.detokenize([token]).decode("utf-8", "ignore") history[-1][1] = partial_text yield history with gr.Blocks( theme=gr.themes.Soft() ) as demo: favicon = '' gr.Markdown( f"""

{favicon}Saiga2 13B GGUF Q4_K

This is a demo of a **Russian**-speaking LLaMA2-based model. If you are interested in other languages, please check other models, such as [MPT-7B-Chat](https://huggingface.co/spaces/mosaicml/mpt-7b-chat). Это демонстрационная версия [квантованной Сайги-2 с 13 миллиардами параметров](https://huggingface.co/IlyaGusev/saiga2_13b_ggml), работающая на CPU. Сайга-2 — это разговорная языковая модель, которая основана на [LLaMA-2](https://ai.meta.com/llama/) и дообучена на корпусах, сгенерированных ChatGPT, таких как [ru_turbo_alpaca](https://huggingface.co/datasets/IlyaGusev/ru_turbo_alpaca), [ru_turbo_saiga](https://huggingface.co/datasets/IlyaGusev/ru_turbo_saiga) и [gpt_roleplay_realm](https://huggingface.co/datasets/IlyaGusev/gpt_roleplay_realm). """ ) with gr.Row(): with gr.Column(scale=5): system_prompt = gr.Textbox(label="Системный промпт", placeholder="", value=SYSTEM_PROMPT, interactive=False) chatbot = gr.Chatbot(label="Диалог").style(height=400) with gr.Column(min_width=80, scale=1): with gr.Tab(label="Параметры генерации"): top_p = gr.Slider( minimum=0.0, maximum=1.0, value=0.9, step=0.05, interactive=True, label="Top-p", ) top_k = gr.Slider( minimum=10, maximum=100, value=30, step=5, interactive=True, label="Top-k", ) temp = gr.Slider( minimum=0.0, maximum=2.0, value=0.01, step=0.01, interactive=True, label="Температура" ) with gr.Row(): with gr.Column(): msg = gr.Textbox( label="Отправить сообщение", placeholder="Отправить сообщение", show_label=False, ).style(container=False) with gr.Column(): with gr.Row(): submit = gr.Button("Отправить") stop = gr.Button("Остановить") clear = gr.Button("Очистить") with gr.Row(): gr.Markdown( """ПРЕДУПРЕЖДЕНИЕ: Модель может генерировать фактически или этически некорректные тексты. Мы не несём за это ответственность.""" ) # Pressing Enter submit_event = msg.submit( fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False, ).success( fn=bot, inputs=[ chatbot, system_prompt, top_p, top_k, temp ], outputs=chatbot, queue=True, ) # Pressing the button submit_click_event = submit.click( fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False, ).success( fn=bot, inputs=[ chatbot, system_prompt, top_p, top_k, temp ], outputs=chatbot, queue=True, ) # Stop generation stop.click( fn=None, inputs=None, outputs=None, cancels=[submit_event, submit_click_event], queue=False, ) # Clear history clear.click(lambda: None, None, chatbot, queue=False) demo.queue(max_size=128, concurrency_count=1) demo.launch()