ImranzamanML commited on
Commit
60656dd
·
verified ·
1 Parent(s): a03a6c3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -9,7 +9,7 @@ from langchain.chains.question_answering import load_qa_chain
9
  from langchain_google_genai import GoogleGenerativeAIEmbeddings
10
  from langchain.text_splitter import RecursiveCharacterTextSplitter
11
 
12
- def process_pdf_files(pdf_files, embedding_model_name):
13
  text = ""
14
  for pdf in pdf_files:
15
  reader = PdfReader(pdf)
@@ -17,27 +17,27 @@ def process_pdf_files(pdf_files, embedding_model_name):
17
  text += page.extract_text()
18
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=500)
19
  text_chunks = text_splitter.split_text(text)
20
- embeddings = GoogleGenerativeAIEmbeddings(model=embedding_model_name)
21
  vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
22
  vector_store.save_local("pdf_database")
23
  return vector_store
24
 
25
- def setup_qa_chain(chat_model_name):
26
  prompt_template = """
27
  Give answer to the asked question using the provided custom knowledge or given context only and if there is no related content then simply say "Your document dont contain related context to answer". Make sure to not answer incorrect.\n\n
28
  Context:\n{context}\n
29
  Question:\n{question}\n
30
  Answer:
31
  """
32
- model = ChatGoogleGenerativeAI(model=chat_model_name, temperature=0.3)
33
  prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
34
  return load_qa_chain(model, chain_type="stuff", prompt=prompt)
35
 
36
- def get_response(user_question, chat_model_name, embedding_model_name):
37
- embeddings = GoogleGenerativeAIEmbeddings(model=embedding_model_name)
38
  vector_store = FAISS.load_local("pdf_database", embeddings, allow_dangerous_deserialization=True)
39
  docs = vector_store.similarity_search(user_question)
40
- chain = setup_qa_chain(chat_model_name)
41
  response = chain(
42
  {"input_documents": docs, "question": user_question},
43
  return_only_outputs=True
@@ -88,7 +88,7 @@ def main():
88
  if st.button("Submit data") and pdf_files:
89
  if embedding_model_name:
90
  with st.spinner("Processing the data . . ."):
91
- process_pdf_files(pdf_files, embedding_model_name)
92
  st.success("Files submitted successfully")
93
  else:
94
  st.warning("Please select or enter an embedding model.")
@@ -100,7 +100,7 @@ def main():
100
 
101
  if user_question:
102
  with st.spinner("Generating response..."):
103
- response = get_response(user_question, chat_model_name, embedding_model_name)
104
  st.write("**Reply:** ", response)
105
 
106
  else:
 
9
  from langchain_google_genai import GoogleGenerativeAIEmbeddings
10
  from langchain.text_splitter import RecursiveCharacterTextSplitter
11
 
12
+ def process_pdf_files(pdf_files, embedding_model_name, api_key):
13
  text = ""
14
  for pdf in pdf_files:
15
  reader = PdfReader(pdf)
 
17
  text += page.extract_text()
18
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=500)
19
  text_chunks = text_splitter.split_text(text)
20
+ embeddings = GoogleGenerativeAIEmbeddings(model=embedding_model_name, google_api_key=api_key)
21
  vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
22
  vector_store.save_local("pdf_database")
23
  return vector_store
24
 
25
+ def setup_qa_chain(chat_model_name, api_key):
26
  prompt_template = """
27
  Give answer to the asked question using the provided custom knowledge or given context only and if there is no related content then simply say "Your document dont contain related context to answer". Make sure to not answer incorrect.\n\n
28
  Context:\n{context}\n
29
  Question:\n{question}\n
30
  Answer:
31
  """
32
+ model = ChatGoogleGenerativeAI(model=chat_model_name, temperature=0.3, google_api_key=api_key)
33
  prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
34
  return load_qa_chain(model, chain_type="stuff", prompt=prompt)
35
 
36
+ def get_response(user_question, chat_model_name, embedding_model_name, api_key):
37
+ embeddings = GoogleGenerativeAIEmbeddings(model=embedding_model_name, google_api_key=api_key)
38
  vector_store = FAISS.load_local("pdf_database", embeddings, allow_dangerous_deserialization=True)
39
  docs = vector_store.similarity_search(user_question)
40
+ chain = setup_qa_chain(chat_model_name, api_key)
41
  response = chain(
42
  {"input_documents": docs, "question": user_question},
43
  return_only_outputs=True
 
88
  if st.button("Submit data") and pdf_files:
89
  if embedding_model_name:
90
  with st.spinner("Processing the data . . ."):
91
+ process_pdf_files(pdf_files, embedding_model_name, api_key)
92
  st.success("Files submitted successfully")
93
  else:
94
  st.warning("Please select or enter an embedding model.")
 
100
 
101
  if user_question:
102
  with st.spinner("Generating response..."):
103
+ response = get_response(user_question, chat_model_name, embedding_model_name, api_key)
104
  st.write("**Reply:** ", response)
105
 
106
  else: