Inara132000 commited on
Commit
992f04e
·
verified ·
1 Parent(s): f98da18

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -63
app.py CHANGED
@@ -1,64 +1,63 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from deliverable2 import URLValidator
3
+
4
+ # Instantiate the validator
5
+ validator = URLValidator()
6
+
7
+ # Updated queries and URLs
8
+ queries = [
9
+ "How blockchain works",
10
+ "Climate change effects",
11
+ "COVID-19 vaccine effectiveness",
12
+ "Latest AI advancements",
13
+ "Stock market trends",
14
+ "Healthy diet tips",
15
+ "Space exploration missions",
16
+ "Electric vehicle benefits",
17
+ "History of the internet",
18
+ "Nutritional benefits of a vegan diet",
19
+ "Mental health awareness",
20
+ ]
21
+
22
+ urls = [
23
+ "https://www.ibm.com/topics/what-is-blockchain",
24
+ "https://www.nationalgeographic.com/environment/article/climate-change-overview",
25
+ "https://www.cdc.gov/coronavirus/2019-ncov/vaccines/effectiveness.html",
26
+ "https://www.technologyreview.com/topic/artificial-intelligence",
27
+ "https://www.bloomberg.com/markets",
28
+ "https://www.healthline.com/nutrition/healthy-eating-tips",
29
+ "https://www.nasa.gov/missions",
30
+ "https://www.tesla.com/benefits",
31
+ "https://www.history.com/topics/inventions/history-of-the-internet",
32
+ "https://www.hsph.harvard.edu/nutritionsource/healthy-weight/diet-reviews/vegan-diet/",
33
+ "https://www.who.int/news-room/fact-sheets/detail/mental-health-strengthening-our-response"
34
+ ]
35
+
36
+ # Function to validate URL
37
+ def validate_url(user_query, url_to_check):
38
+ result = validator.rate_url_validity(user_query, url_to_check)
39
+
40
+ if "Validation Error" in result:
41
+ return {"Error": result["Validation Error"]}
42
+
43
+ return {
44
+ "Content Relevance Score": f"{result['raw_score']['Content Relevance']} / 100",
45
+ "Bias Score": f"{result['raw_score']['Bias Score']} / 100",
46
+ "Final Validity Score": f"{result['raw_score']['Final Validity Score']} / 100"
47
+ }
48
+
49
+ # Gradio UI
50
+ with gr.Blocks() as app:
51
+ gr.Markdown("# 🌍 URL Credibility Validator")
52
+ gr.Markdown("### Validate the credibility of any webpage using AI")
53
+
54
+ user_query = gr.Dropdown(queries, label="Select a search query:")
55
+ url_to_check = gr.Dropdown(urls, label="Select a URL to validate:")
56
+
57
+ result_output = gr.JSON(label="Validation Results")
58
+
59
+ submit_button = gr.Button("Validate URL")
60
+ submit_button.click(validate_url, inputs=[user_query, url_to_check], outputs=result_output)
61
+
62
+ # Launch the app
63
+ app.launch(server_name="0.0.0.0", server_port=7860)