File size: 6,423 Bytes
cdb26a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b6c2bd
cdb26a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469f43d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdb26a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import sys
import numpy as np
import torch
import yaml
import glob
import argparse
from PIL import Image
from omegaconf import OmegaConf
from pathlib import Path

os.environ['OMP_NUM_THREADS'] = '1'
os.environ['OPENBLAS_NUM_THREADS'] = '1'
os.environ['MKL_NUM_THREADS'] = '1'
os.environ['VECLIB_MAXIMUM_THREADS'] = '1'
os.environ['NUMEXPR_NUM_THREADS'] = '1'

sys.path.insert(0, str(Path(__file__).resolve().parent / "third_party" / "lama"))

from saicinpainting.evaluation.utils import move_to_device
from saicinpainting.training.trainers import load_checkpoint
from saicinpainting.evaluation.data import pad_tensor_to_modulo

from utils import load_img_to_array, save_array_to_img


@torch.no_grad()
def inpaint_img_with_lama(
        img: np.ndarray,
        mask: np.ndarray,
        config_p: str,
        ckpt_p: str,
        mod=8,
        device="cuda"
):
    assert len(mask.shape) == 2
    if np.max(mask) == 1:
        mask = mask * 255
    img = torch.from_numpy(img).float().div(255.)
    mask = torch.from_numpy(mask).float()
    predict_config = OmegaConf.load(config_p)
    predict_config.model.path = ckpt_p
    # device = torch.device(predict_config.device)
    device = torch.device(device)

    train_config_path = os.path.join(
        predict_config.model.path, 'config.yaml')

    with open(train_config_path, 'r') as f:
        train_config = OmegaConf.create(yaml.safe_load(f))

    train_config.training_model.predict_only = True
    train_config.visualizer.kind = 'noop'

    checkpoint_path = os.path.join(
        predict_config.model.path, 'models',
        predict_config.model.checkpoint
    )
    model = load_checkpoint(
        train_config, checkpoint_path, strict=False, map_location=device)
    model.freeze()
    if not predict_config.get('refine', False):
        model.to(device)

    batch = {}
    batch['image'] = img.permute(2, 0, 1).unsqueeze(0)
    batch['mask'] = mask[None, None]
    unpad_to_size = [batch['image'].shape[2], batch['image'].shape[3]]
    batch['image'] = pad_tensor_to_modulo(batch['image'], mod)
    batch['mask'] = pad_tensor_to_modulo(batch['mask'], mod)
    batch = move_to_device(batch, device)
    batch['mask'] = (batch['mask'] > 0) * 1

    batch = model(batch)
    cur_res = batch[predict_config.out_key][0].permute(1, 2, 0)
    cur_res = cur_res.detach().cpu().numpy()

    if unpad_to_size is not None:
        orig_height, orig_width = unpad_to_size
        cur_res = cur_res[:orig_height, :orig_width]

    cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
    return cur_res


def build_lama_model(        
        config_p: str,
        ckpt_p: str,
        device="cuda"
):
    predict_config = OmegaConf.load(config_p)
    predict_config.model.path = ckpt_p
    # device = torch.device(predict_config.device)
    device = torch.device(device)

    train_config_path = os.path.join(
        predict_config.model.path, 'config.yaml')

    with open(train_config_path, 'r') as f:
        train_config = OmegaConf.create(yaml.safe_load(f))

    train_config.training_model.predict_only = True
    train_config.visualizer.kind = 'noop'

    checkpoint_path = os.path.join(
        predict_config.model.path, 'models',
        predict_config.model.checkpoint
    )
    model = load_checkpoint(
        train_config, checkpoint_path, strict=False, map_location=device)
    model.freeze()
    if not predict_config.get('refine', False):
        model.to(device)

    return model


@torch.no_grad()
def inpaint_img_with_builded_lama(
        model,
        img: np.ndarray,
        mask: np.ndarray,
        config_p: str,
        mod=8,
        device="cuda"
):
    assert len(mask.shape) == 2
    if np.max(mask) == 1:
        mask = mask * 255
    img = torch.from_numpy(img).float().div(255.)
    mask = torch.from_numpy(mask).float()
    predict_config = OmegaConf.load(config_p)

    batch = {}
    batch['image'] = img.permute(2, 0, 1).unsqueeze(0)
    batch['mask'] = mask[None, None]
    unpad_to_size = [batch['image'].shape[2], batch['image'].shape[3]]
    batch['image'] = pad_tensor_to_modulo(batch['image'], mod)
    batch['mask'] = pad_tensor_to_modulo(batch['mask'], mod)
    batch = move_to_device(batch, device)
    batch['mask'] = (batch['mask'] > 0) * 1

    batch = model(batch)
    cur_res = batch[predict_config.out_key][0].permute(1, 2, 0)
    cur_res = cur_res.detach().cpu().numpy()

    if unpad_to_size is not None:
        orig_height, orig_width = unpad_to_size
        cur_res = cur_res[:orig_height, :orig_width]

    cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
    return cur_res


def setup_args(parser):
    parser.add_argument(
        "--input_img", type=str, required=True,
        help="Path to a single input img",
    )
    parser.add_argument(
        "--input_mask_glob", type=str, required=True,
        help="Glob to input masks",
    )
    parser.add_argument(
        "--output_dir", type=str, required=True,
        help="Output path to the directory with results.",
    )
    parser.add_argument(
        "--lama_config", type=str,
        default="./third_party/lama/configs/prediction/default.yaml",
        help="The path to the config file of lama model. "
             "Default: the config of big-lama",
    )
    parser.add_argument(
        "--lama_ckpt", type=str, required=True,
        help="The path to the lama checkpoint.",
    )


if __name__ == "__main__":
    """Example usage:
    python lama_inpaint.py \
        --input_img FA_demo/FA1_dog.png \
        --input_mask_glob "results/FA1_dog/mask*.png" \
        --output_dir results \
        --lama_config lama/configs/prediction/default.yaml \
        --lama_ckpt big-lama 
    """
    parser = argparse.ArgumentParser()
    setup_args(parser)
    args = parser.parse_args(sys.argv[1:])
    device = "cuda" if torch.cuda.is_available() else "cpu"

    img_stem = Path(args.input_img).stem
    mask_ps = sorted(glob.glob(args.input_mask_glob))
    out_dir = Path(args.output_dir) / img_stem
    out_dir.mkdir(parents=True, exist_ok=True)

    img = load_img_to_array(args.input_img)
    for mask_p in mask_ps:
        mask = load_img_to_array(mask_p)
        img_inpainted_p = out_dir / f"inpainted_with_{Path(mask_p).name}"
        img_inpainted = inpaint_img_with_lama(
            img, mask, args.lama_config, args.lama_ckpt, device=device)
        save_array_to_img(img_inpainted, img_inpainted_p)