Inpaint-Anything / sam_segment.py
RysonFeng
Check dependency
2b6c2bd
raw
history blame
4.11 kB
import sys
import argparse
import numpy as np
from pathlib import Path
from matplotlib import pyplot as plt
from typing import Any, Dict, List
import torch
sys.path.insert(0, str(Path(__file__).resolve().parent / "third_party" / "segment-anything"))
from segment_anything import SamPredictor, sam_model_registry
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
show_mask, show_points
def predict_masks_with_sam(
img: np.ndarray,
point_coords: List[List[float]],
point_labels: List[int],
model_type: str,
ckpt_p: str,
device="cuda"
):
point_coords = np.array(point_coords)
point_labels = np.array(point_labels)
sam = sam_model_registry[model_type](checkpoint=ckpt_p)
sam.to(device=device)
predictor = SamPredictor(sam)
predictor.set_image(img)
masks, scores, logits = predictor.predict(
point_coords=point_coords,
point_labels=point_labels,
multimask_output=True,
)
return masks, scores, logits
def setup_args(parser):
parser.add_argument(
"--input_img", type=str, required=True,
help="Path to a single input img",
)
parser.add_argument(
"--point_coords", type=float, nargs='+', required=True,
help="The coordinate of the point prompt, [coord_W coord_H].",
)
parser.add_argument(
"--point_labels", type=int, nargs='+', required=True,
help="The labels of the point prompt, 1 or 0.",
)
parser.add_argument(
"--dilate_kernel_size", type=int, default=None,
help="Dilate kernel size. Default: None",
)
parser.add_argument(
"--output_dir", type=str, required=True,
help="Output path to the directory with results.",
)
parser.add_argument(
"--sam_model_type", type=str,
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b'],
help="The type of sam model to load. Default: 'vit_h"
)
parser.add_argument(
"--sam_ckpt", type=str, required=True,
help="The path to the SAM checkpoint to use for mask generation.",
)
if __name__ == "__main__":
"""Example usage:
python sam_segment.py \
--input_img FA_demo/FA1_dog.png \
--point_coords 750 500 \
--point_labels 1 \
--dilate_kernel_size 15 \
--output_dir ./results \
--sam_model_type "vit_h" \
--sam_ckpt sam_vit_h_4b8939.pth
"""
parser = argparse.ArgumentParser()
setup_args(parser)
args = parser.parse_args(sys.argv[1:])
device = "cuda" if torch.cuda.is_available() else "cpu"
img = load_img_to_array(args.input_img)
masks, _, _ = predict_masks_with_sam(
img,
[args.point_coords],
args.point_labels,
model_type=args.sam_model_type,
ckpt_p=args.sam_ckpt,
device=device,
)
masks = masks.astype(np.uint8) * 255
# dilate mask to avoid unmasked edge effect
if args.dilate_kernel_size is not None:
masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks]
# visualize the segmentation results
img_stem = Path(args.input_img).stem
out_dir = Path(args.output_dir) / img_stem
out_dir.mkdir(parents=True, exist_ok=True)
for idx, mask in enumerate(masks):
# path to the results
mask_p = out_dir / f"mask_{idx}.png"
img_points_p = out_dir / f"with_points.png"
img_mask_p = out_dir / f"with_{Path(mask_p).name}"
# save the mask
save_array_to_img(mask, mask_p)
# save the pointed and masked image
dpi = plt.rcParams['figure.dpi']
height, width = img.shape[:2]
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
plt.imshow(img)
plt.axis('off')
show_points(plt.gca(), [args.point_coords], args.point_labels,
size=(width*0.04)**2)
plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0)
show_mask(plt.gca(), mask, random_color=False)
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
plt.close()