ResearcherXman
use depth-anything
1d422fe
raw
history blame
3.91 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from enum import Enum
import logging
from typing import Any, Dict, Optional
import torch
from torch import Tensor
from torchmetrics import Metric, MetricCollection
from torchmetrics.classification import MulticlassAccuracy
from torchmetrics.utilities.data import dim_zero_cat, select_topk
logger = logging.getLogger("dinov2")
class MetricType(Enum):
MEAN_ACCURACY = "mean_accuracy"
MEAN_PER_CLASS_ACCURACY = "mean_per_class_accuracy"
PER_CLASS_ACCURACY = "per_class_accuracy"
IMAGENET_REAL_ACCURACY = "imagenet_real_accuracy"
@property
def accuracy_averaging(self):
return getattr(AccuracyAveraging, self.name, None)
def __str__(self):
return self.value
class AccuracyAveraging(Enum):
MEAN_ACCURACY = "micro"
MEAN_PER_CLASS_ACCURACY = "macro"
PER_CLASS_ACCURACY = "none"
def __str__(self):
return self.value
def build_metric(metric_type: MetricType, *, num_classes: int, ks: Optional[tuple] = None):
if metric_type.accuracy_averaging is not None:
return build_topk_accuracy_metric(
average_type=metric_type.accuracy_averaging,
num_classes=num_classes,
ks=(1, 5) if ks is None else ks,
)
elif metric_type == MetricType.IMAGENET_REAL_ACCURACY:
return build_topk_imagenet_real_accuracy_metric(
num_classes=num_classes,
ks=(1, 5) if ks is None else ks,
)
raise ValueError(f"Unknown metric type {metric_type}")
def build_topk_accuracy_metric(average_type: AccuracyAveraging, num_classes: int, ks: tuple = (1, 5)):
metrics: Dict[str, Metric] = {
f"top-{k}": MulticlassAccuracy(top_k=k, num_classes=int(num_classes), average=average_type.value) for k in ks
}
return MetricCollection(metrics)
def build_topk_imagenet_real_accuracy_metric(num_classes: int, ks: tuple = (1, 5)):
metrics: Dict[str, Metric] = {f"top-{k}": ImageNetReaLAccuracy(top_k=k, num_classes=int(num_classes)) for k in ks}
return MetricCollection(metrics)
class ImageNetReaLAccuracy(Metric):
is_differentiable: bool = False
higher_is_better: Optional[bool] = None
full_state_update: bool = False
def __init__(
self,
num_classes: int,
top_k: int = 1,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
self.num_classes = num_classes
self.top_k = top_k
self.add_state("tp", [], dist_reduce_fx="cat")
def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore
# preds [B, D]
# target [B, A]
# preds_oh [B, D] with 0 and 1
# select top K highest probabilities, use one hot representation
preds_oh = select_topk(preds, self.top_k)
# target_oh [B, D + 1] with 0 and 1
target_oh = torch.zeros((preds_oh.shape[0], preds_oh.shape[1] + 1), device=target.device, dtype=torch.int32)
target = target.long()
# for undefined targets (-1) use a fake value `num_classes`
target[target == -1] = self.num_classes
# fill targets, use one hot representation
target_oh.scatter_(1, target, 1)
# target_oh [B, D] (remove the fake target at index `num_classes`)
target_oh = target_oh[:, :-1]
# tp [B] with 0 and 1
tp = (preds_oh * target_oh == 1).sum(dim=1)
# at least one match between prediction and target
tp.clip_(max=1)
# ignore instances where no targets are defined
mask = target_oh.sum(dim=1) > 0
tp = tp[mask]
self.tp.append(tp) # type: ignore
def compute(self) -> Tensor:
tp = dim_zero_cat(self.tp) # type: ignore
return tp.float().mean()