ResearcherXman commited on
Commit
857a5c4
·
1 Parent(s): 5b3c0e4

fix cuda errors

Browse files
Files changed (2) hide show
  1. app.py +33 -4
  2. controlnet_util.py +0 -38
app.py CHANGED
@@ -1,4 +1,3 @@
1
- import os
2
  import cv2
3
  import torch
4
  import random
@@ -20,10 +19,36 @@ from insightface.app import FaceAnalysis
20
 
21
  from style_template import styles
22
  from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
23
- from controlnet_util import openpose, get_depth_map, get_canny_image
24
 
 
 
25
  import gradio as gr
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  # global variable
28
  MAX_SEED = np.iinfo(np.int32).max
29
  device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -46,10 +71,14 @@ hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_d
46
  app = FaceAnalysis(
47
  name="antelopev2",
48
  root="./",
49
- providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
50
  )
51
  app.prepare(ctx_id=0, det_size=(640, 640))
52
 
 
 
 
 
53
  # Path to InstantID models
54
  face_adapter = f"./checkpoints/ip-adapter.bin"
55
  controlnet_path = f"./checkpoints/ControlNetModel"
@@ -59,7 +88,7 @@ controlnet_identitynet = ControlNetModel.from_pretrained(
59
  controlnet_path, torch_dtype=dtype
60
  )
61
 
62
- # controlnet-pose
63
  controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
64
  controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
65
  controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small"
 
 
1
  import cv2
2
  import torch
3
  import random
 
19
 
20
  from style_template import styles
21
  from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
 
22
 
23
+ from controlnet_aux import OpenposeDetector
24
+ from transformers import DPTImageProcessor, DPTForDepthEstimation
25
  import gradio as gr
26
 
27
+ def get_depth_map(image):
28
+ image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
29
+ with torch.no_grad(), torch.autocast("cuda"):
30
+ depth_map = depth_estimator(image).predicted_depth
31
+
32
+ depth_map = torch.nn.functional.interpolate(
33
+ depth_map.unsqueeze(1),
34
+ size=(1024, 1024),
35
+ mode="bicubic",
36
+ align_corners=False,
37
+ )
38
+ depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
39
+ depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
40
+ depth_map = (depth_map - depth_min) / (depth_max - depth_min)
41
+ image = torch.cat([depth_map] * 3, dim=1)
42
+
43
+ image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
44
+ image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
45
+ return image
46
+
47
+ def get_canny_image(image, t1=100, t2=200):
48
+ image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
49
+ edges = cv2.Canny(image, t1, t2)
50
+ return Image.fromarray(edges, "L")
51
+
52
  # global variable
53
  MAX_SEED = np.iinfo(np.int32).max
54
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
71
  app = FaceAnalysis(
72
  name="antelopev2",
73
  root="./",
74
+ providers=["CPUExecutionProvider"],
75
  )
76
  app.prepare(ctx_id=0, det_size=(640, 640))
77
 
78
+ depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
79
+ feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
80
+ openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
81
+
82
  # Path to InstantID models
83
  face_adapter = f"./checkpoints/ip-adapter.bin"
84
  controlnet_path = f"./checkpoints/ControlNetModel"
 
88
  controlnet_path, torch_dtype=dtype
89
  )
90
 
91
+ # controlnet-pose/canny/depth
92
  controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
93
  controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
94
  controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small"
controlnet_util.py DELETED
@@ -1,38 +0,0 @@
1
- import torch
2
- import numpy as np
3
- from PIL import Image
4
- from controlnet_aux import OpenposeDetector
5
- import cv2
6
-
7
-
8
- from transformers import DPTImageProcessor, DPTForDepthEstimation
9
-
10
- device = "cuda" if torch.cuda.is_available() else "cpu"
11
- depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
12
- feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
13
- openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
14
-
15
- def get_depth_map(image):
16
- image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
17
- with torch.no_grad(), torch.autocast("cuda"):
18
- depth_map = depth_estimator(image).predicted_depth
19
-
20
- depth_map = torch.nn.functional.interpolate(
21
- depth_map.unsqueeze(1),
22
- size=(1024, 1024),
23
- mode="bicubic",
24
- align_corners=False,
25
- )
26
- depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
27
- depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
28
- depth_map = (depth_map - depth_min) / (depth_max - depth_min)
29
- image = torch.cat([depth_map] * 3, dim=1)
30
-
31
- image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
32
- image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
33
- return image
34
-
35
- def get_canny_image(image, t1=100, t2=200):
36
- image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
37
- edges = cv2.Canny(image, t1, t2)
38
- return Image.fromarray(edges, "L")