Spaces:
Running
on
L40S
Running
on
L40S
File size: 4,210 Bytes
22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 22b7941 07afe68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
import os
from pipeline_flux_ipa import FluxPipeline
from transformer_flux import FluxTransformer2DModel
from attention_processor import IPAFluxAttnProcessor2_0
from transformers import AutoProcessor, SiglipVisionModel
from infer_flux_ipa_siglip import MLPProjModel, IPAdapter
from huggingface_hub import hf_hub_download
import spaces
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
image_encoder_path = "google/siglip-so400m-patch14-384"
ipadapter_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-IP-Adapter", filename="ip-adapter.bin")
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
torch_dtype=torch.bfloat16
)
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=transformer,
torch_dtype=torch.bfloat16
)
ip_model = IPAdapter(pipe, image_encoder_path, ipadapter_path, device="cuda", num_tokens=128)
def resize_img(image, max_size=1024):
width, height = image.size
scaling_factor = min(max_size / width, max_size / height)
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
return image.resize((new_width, new_height), Image.LANCZOS)
@spaces.GPU
def process_image(
image,
prompt,
scale,
seed,
randomize_seed,
width,
height,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if image is None:
return None, seed
# Convert to PIL Image if needed
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
# Resize image
image = resize_img(image)
# Generate the image
result = ip_model.generate(
pil_image=image,
prompt=prompt,
scale=scale,
width=width,
height=height,
seed=seed
)
return result[0], seed
# UI CSS
css = """
#col-container {
margin: 0 auto;
max-width: 960px;
}
"""
# Create the Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Image Processing Model")
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Input Image",
type="pil"
)
prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
run_button = gr.Button("Process", variant="primary")
with gr.Column():
result = gr.Image(label="Result")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=960,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1280,
)
scale = gr.Slider(
label="Scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.7,
)
run_button.click(
fn=process_image,
inputs=[
input_image,
prompt,
scale,
seed,
randomize_seed,
width,
height,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch() |