File size: 4,210 Bytes
22b7941
 
 
 
07afe68
 
 
 
 
 
 
 
 
 
 
22b7941
 
07afe68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22b7941
07afe68
22b7941
 
 
 
 
 
 
 
07afe68
 
 
 
 
 
 
 
 
 
 
 
 
 
22b7941
07afe68
22b7941
 
07afe68
 
 
 
22b7941
07afe68
22b7941
 
 
07afe68
22b7941
 
 
07afe68
22b7941
 
07afe68
 
22b7941
07afe68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22b7941
 
 
 
 
 
07afe68
22b7941
07afe68
22b7941
07afe68
22b7941
 
 
 
 
 
07afe68
22b7941
07afe68
22b7941
 
 
 
 
07afe68
22b7941
07afe68
 
 
 
 
 
 
 
 
 
 
22b7941
07afe68
22b7941
07afe68
22b7941
 
 
 
 
 
 
 
 
07afe68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
import os
from pipeline_flux_ipa import FluxPipeline
from transformer_flux import FluxTransformer2DModel
from attention_processor import IPAFluxAttnProcessor2_0
from transformers import AutoProcessor, SiglipVisionModel
from infer_flux_ipa_siglip import MLPProjModel, IPAdapter
from huggingface_hub import hf_hub_download
import spaces

# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

image_encoder_path = "google/siglip-so400m-patch14-384"
ipadapter_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-IP-Adapter", filename="ip-adapter.bin")

transformer = FluxTransformer2DModel.from_pretrained(
    "black-forest-labs/FLUX.1-dev", 
    subfolder="transformer", 
    torch_dtype=torch.bfloat16
)
pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", 
    transformer=transformer, 
    torch_dtype=torch.bfloat16
)
ip_model = IPAdapter(pipe, image_encoder_path, ipadapter_path, device="cuda", num_tokens=128)


def resize_img(image, max_size=1024):
    width, height = image.size
    scaling_factor = min(max_size / width, max_size / height)
    new_width = int(width * scaling_factor)
    new_height = int(height * scaling_factor)
    return image.resize((new_width, new_height), Image.LANCZOS)

@spaces.GPU
def process_image(
    image,
    prompt,
    scale,
    seed,
    randomize_seed,
    width,
    height,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    if image is None:
        return None, seed
    
    # Convert to PIL Image if needed
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    
    # Resize image
    image = resize_img(image)
    
    # Generate the image
    result = ip_model.generate(
        pil_image=image,
        prompt=prompt,
        scale=scale,
        width=width,
        height=height,
        seed=seed
    )
    
    return result[0], seed

# UI CSS
css = """
#col-container {
    margin: 0 auto;
    max-width: 960px;
}
"""

# Create the Gradio interface
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# Image Processing Model")
        
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    label="Input Image",
                    type="pil"
                )
                prompt = gr.Text(
                    label="Prompt",
                    max_lines=1,
                    placeholder="Enter your prompt",
                )
                run_button = gr.Button("Process", variant="primary")
            
            with gr.Column():
                result = gr.Image(label="Result")
        
        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=960,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1280,
                )
            
            scale = gr.Slider(
                label="Scale",
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.7,
            )
    
    run_button.click(
        fn=process_image,
        inputs=[
            input_image,
            prompt,
            scale,
            seed,
            randomize_seed,
            width,
            height,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()