Jean Yu commited on
Commit
e7abe49
1 Parent(s): caef638

Add denoise_steps to enable optimization via early stopped diffusion process

Browse files
Files changed (1) hide show
  1. app.py +10 -6
app.py CHANGED
@@ -44,18 +44,19 @@ def predict(
44
  prompt: str,
45
  negative_prompt: str,
46
  guidance_scale: float = 5.0,
 
47
  seed: int = 0,
48
  randomize_seed: bool = True,
49
  ):
50
  generator = torch.Generator() if randomize_seed else torch.manual_seed(seed)
51
  output = pipe(
52
- prompt,
53
  width=1024,
54
  height=512,
55
  negative_prompt=negative_prompt,
56
  guidance_scale=guidance_scale,
57
  generator=generator,
58
- num_inference_steps=50,
59
  ) # type: ignore
60
  rgb_image, depth_image = output.rgb[0], output.depth[0] # type: ignore
61
  with NamedTemporaryFile(suffix=".png", delete=False, dir="tmp") as rgb_file:
@@ -87,6 +88,9 @@ For better results, specify "360 view of" or "panoramic view of" in the prompt
87
  guidance_scale = gr.Slider(
88
  label="Guidance Scale", minimum=0, maximum=10, step=0.1, value=5.0
89
  )
 
 
 
90
  randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
91
  seed = gr.Slider(label="Seed", minimum=0,
92
  maximum=2**64 - 1, step=1)
@@ -101,16 +105,16 @@ For better results, specify "360 view of" or "panoramic view of" in the prompt
101
  depth = gr.Image(label="Depth Image", type="filepath")
102
  gr.Examples(
103
  examples=[
104
- ["360 view of a large bedroom", "", 7.0, 42, False]],
105
- inputs=[prompt, negative_prompt, guidance_scale, seed, randomize_seed],
106
  outputs=[rgb, depth, generated_seed, html],
107
  fn=predict,
108
  cache_examples=True)
109
 
110
  new_btn.click(
111
  fn=predict,
112
- inputs=[prompt, negative_prompt, guidance_scale, seed, randomize_seed],
113
  outputs=[rgb, depth, generated_seed, html],
114
  )
115
 
116
- block.launch()
 
44
  prompt: str,
45
  negative_prompt: str,
46
  guidance_scale: float = 5.0,
47
+ denoise_steps: int = 50,
48
  seed: int = 0,
49
  randomize_seed: bool = True,
50
  ):
51
  generator = torch.Generator() if randomize_seed else torch.manual_seed(seed)
52
  output = pipe(
53
+ prompt,
54
  width=1024,
55
  height=512,
56
  negative_prompt=negative_prompt,
57
  guidance_scale=guidance_scale,
58
  generator=generator,
59
+ num_inference_steps=denoise_steps,
60
  ) # type: ignore
61
  rgb_image, depth_image = output.rgb[0], output.depth[0] # type: ignore
62
  with NamedTemporaryFile(suffix=".png", delete=False, dir="tmp") as rgb_file:
 
88
  guidance_scale = gr.Slider(
89
  label="Guidance Scale", minimum=0, maximum=10, step=0.1, value=5.0
90
  )
91
+ denoise_steps = gr.Slider(
92
+ label="Denoise Steps", minimum=25, maximum=250, step=25, value=50
93
+ )
94
  randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
95
  seed = gr.Slider(label="Seed", minimum=0,
96
  maximum=2**64 - 1, step=1)
 
105
  depth = gr.Image(label="Depth Image", type="filepath")
106
  gr.Examples(
107
  examples=[
108
+ ["360 view of a large bedroom", "", 7.0, 50, 42, False]],
109
+ inputs=[prompt, negative_prompt, guidance_scale, denoise_steps, seed, randomize_seed],
110
  outputs=[rgb, depth, generated_seed, html],
111
  fn=predict,
112
  cache_examples=True)
113
 
114
  new_btn.click(
115
  fn=predict,
116
+ inputs=[prompt, negative_prompt, guidance_scale, denoise_steps, seed, randomize_seed],
117
  outputs=[rgb, depth, generated_seed, html],
118
  )
119
 
120
+ block.launch()