|
from dataclasses import dataclass, make_dataclass |
|
from enum import Enum |
|
|
|
import pandas as pd |
|
|
|
def fields(raw_class): |
|
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] |
|
|
|
|
|
@dataclass |
|
class Task: |
|
benchmark: str |
|
metric: str |
|
col_name: str |
|
|
|
class Tasks(Enum): |
|
arc = Task("arc:challenge", "acc,none", "ARC-c") |
|
arc_easy = Task("arc:easy", "acc,none", "ARC-e") |
|
boolq = Task("boolq", "acc,none", "Boolq") |
|
hellaswag = Task("hellaswag", "acc,none", "HellaSwag") |
|
lambada_openai = Task("lambada:openai", "acc,none", "Lambada") |
|
mmlu = Task("mmlu", "acc,none", "MMLU") |
|
openbookqa = Task("openbookqa", "acc,none", "Openbookqa") |
|
piqa = Task("piqa", "acc,none", "Piqa") |
|
|
|
truthfulqa_mc = Task("truthfulqa:mc1", "acc,none", "Truthfulqa") |
|
|
|
|
|
|
|
winogrande = Task("winogrande", "acc,none", "Winogrande") |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ColumnContent: |
|
name: str |
|
type: str |
|
displayed_by_default: bool |
|
hidden: bool = False |
|
never_hidden: bool = False |
|
dummy: bool = False |
|
|
|
auto_eval_column_dict = [] |
|
|
|
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) |
|
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) |
|
|
|
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)]) |
|
for task in Tasks: |
|
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) |
|
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", True)]) |
|
auto_eval_column_dict.append(["model_size", ColumnContent, ColumnContent("#Size (G)", "number", True)]) |
|
|
|
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)]) |
|
|
|
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, hidden=True)]) |
|
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) |
|
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) |
|
auto_eval_column_dict.append(["quant_type", ColumnContent, ColumnContent("Quant type", "str", False)]) |
|
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) |
|
auto_eval_column_dict.append(["weight_dtype", ColumnContent, ColumnContent("Weight dtype", "str", False)]) |
|
auto_eval_column_dict.append(["compute_dtype", ColumnContent, ColumnContent("Compute dtype", "str", False)]) |
|
auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False, hidden=True)]) |
|
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) |
|
|
|
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)]) |
|
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)]) |
|
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) |
|
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)]) |
|
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)]) |
|
auto_eval_column_dict.append(["double_quant", ColumnContent, ColumnContent("Double Quant", "bool", False)]) |
|
auto_eval_column_dict.append(["group_size", ColumnContent, ColumnContent("Group Size", "bool", False)]) |
|
|
|
|
|
sorted_columns = sorted(auto_eval_column_dict[3:], key=lambda x: x[0]) |
|
sorted_auto_eval_column_dict = auto_eval_column_dict[:3] + sorted_columns |
|
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) |
|
|
|
@dataclass(frozen=True) |
|
class EvalQueueColumn: |
|
model = ColumnContent("model", "markdown", True) |
|
revision = ColumnContent("revision", "str", True) |
|
private = ColumnContent("private", "bool", True) |
|
precision = ColumnContent("precision", "str", True) |
|
weight_type = ColumnContent("weight_type", "str", "Original") |
|
status = ColumnContent("status", "str", True) |
|
|
|
|
|
baseline_row = { |
|
AutoEvalColumn.model.name: "<p>Baseline</p>", |
|
AutoEvalColumn.revision.name: "N/A", |
|
AutoEvalColumn.precision.name: None, |
|
AutoEvalColumn.merged.name: False, |
|
AutoEvalColumn.average.name: 31.0, |
|
AutoEvalColumn.arc.name: 25.0, |
|
|
|
|
|
AutoEvalColumn.winogrande.name: 50.0, |
|
|
|
AutoEvalColumn.dummy.name: "baseline", |
|
AutoEvalColumn.model_type.name: "", |
|
AutoEvalColumn.flagged.name: False, |
|
|
|
AutoEvalColumn.mmlu.name: 25.0, |
|
AutoEvalColumn.lambada_openai.name: 25.0, |
|
AutoEvalColumn.hellaswag.name: 25.0, |
|
AutoEvalColumn.piqa.name: 25.0, |
|
AutoEvalColumn.truthfulqa_mc.name: 25.0, |
|
AutoEvalColumn.openbookqa.name: 25.0, |
|
AutoEvalColumn.boolq.name: True, |
|
AutoEvalColumn.arc_easy.name: 25.0, |
|
AutoEvalColumn.double_quant.name: False, |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
human_baseline_row = { |
|
AutoEvalColumn.model.name: "<p>Human performance</p>", |
|
AutoEvalColumn.revision.name: "N/A", |
|
AutoEvalColumn.precision.name: None, |
|
AutoEvalColumn.average.name: 92.75, |
|
AutoEvalColumn.merged.name: False, |
|
AutoEvalColumn.arc.name: 80.0, |
|
|
|
|
|
|
|
AutoEvalColumn.winogrande.name: 94.0, |
|
|
|
AutoEvalColumn.dummy.name: "human_baseline", |
|
AutoEvalColumn.model_type.name: "", |
|
AutoEvalColumn.flagged.name: False, |
|
} |
|
|
|
@dataclass |
|
class ModelDetails: |
|
name: str |
|
symbol: str = "" |
|
|
|
""" |
|
class ModelType(Enum): |
|
PT = ModelDetails(name="GPTQ", symbol="🟢") |
|
CPT = ModelDetails(name="AWQ", symbol="🟩") |
|
FT = ModelDetails(name="llama.cpp", symbol="🔷") |
|
chat = ModelDetails(name="Bisandbytes", symbol="🔵") |
|
merges = ModelDetails(name="AutoRound", symbol="🍒") |
|
Unknown = ModelDetails(name="", symbol="?") |
|
|
|
def to_str(self, separator=" "): |
|
return f"{self.value.symbol}{separator}{self.value.name}" |
|
|
|
@staticmethod |
|
def from_str(type): |
|
if "fine-tuned" in type or "🔷" in type: |
|
return ModelType.FT |
|
if "continously pretrained" in type or "🟩" in type: |
|
return ModelType.CPT |
|
if "pretrained" in type or "🟢" in type: |
|
return ModelType.PT |
|
if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "⭕", "🔵"]]): |
|
return ModelType.chat |
|
if "merge" in type or "🍒" in type: |
|
return ModelType.merges |
|
return ModelType.Unknown |
|
""" |
|
|
|
class ModelType(Enum): |
|
PT = ModelDetails(name="pretrained", symbol="🟢") |
|
CPT = ModelDetails(name="continuously pretrained", symbol="🟩") |
|
FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="🔷") |
|
chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="🔵") |
|
merges = ModelDetails(name="base merges and moerges", symbol="🍒") |
|
Unknown = ModelDetails(name="", symbol="?") |
|
|
|
def to_str(self, separator=" "): |
|
return f"{self.value.symbol}{separator}{self.value.name}" |
|
|
|
@staticmethod |
|
def from_str(type): |
|
if "fine-tuned" in type or "🔷" in type: |
|
return ModelType.FT |
|
if "continously pretrained" in type or "🟩" in type: |
|
return ModelType.CPT |
|
if "pretrained" in type or "🟢" in type or "quantization" in type: |
|
return ModelType.PT |
|
if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "⭕", "🔵"]]): |
|
return ModelType.chat |
|
if "merge" in type or "🍒" in type: |
|
return ModelType.merges |
|
return ModelType.Unknown |
|
|
|
class WeightType(Enum): |
|
Adapter = ModelDetails("Adapter") |
|
Original = ModelDetails("Original") |
|
Delta = ModelDetails("Delta") |
|
|
|
|
|
class QuantType(Enum): |
|
gptq = ModelDetails(name="GPTQ", symbol="🟢") |
|
aqlm = ModelDetails(name="AQLM", symbol="⭐") |
|
awq = ModelDetails(name="AWQ", symbol="🟩") |
|
llama_cpp = ModelDetails(name="llama.cpp", symbol="🔷") |
|
bnb = ModelDetails(name="bitsandbytes", symbol="🔵") |
|
autoround = ModelDetails(name="AutoRound", symbol="🍒") |
|
Unknown = ModelDetails(name="?", symbol="?") |
|
QuantType_None = ModelDetails(name="None", symbol="✖") |
|
|
|
|
|
def to_str(self, separator=" "): |
|
return f"{self.value.symbol}{separator}{self.value.name}" |
|
|
|
def from_str(quant_dtype): |
|
if quant_dtype in ["GPTQ"]: |
|
return QuantType.gptq |
|
if quant_dtype in ["AQLM"]: |
|
return QuantType.aqlm |
|
if quant_dtype in ["AWQ"]: |
|
return QuantType.awq |
|
if quant_dtype in ["llama.cpp"]: |
|
return QuantType.llama_cpp |
|
if quant_dtype in ["bitsandbytes"]: |
|
return QuantType.bnb |
|
if quant_dtype in ["AutoRound"]: |
|
return QuantType.autoround |
|
if quant_dtype in ["None"]: |
|
return QuantType.QuantType_None |
|
return QuantType.Unknown |
|
|
|
|
|
|
|
class WeightDtype(Enum): |
|
all = ModelDetails("All") |
|
int2 = ModelDetails("int2") |
|
int3 = ModelDetails("int3") |
|
int4 = ModelDetails("int4") |
|
nf4 = ModelDetails("nf4") |
|
fp4 = ModelDetails("fp4") |
|
fp16 = ModelDetails("float16") |
|
bf16 = ModelDetails("bfloat16") |
|
fp32 = ModelDetails("float32") |
|
|
|
Unknown = ModelDetails("?") |
|
|
|
|
|
|
|
def from_str(weight_dtype): |
|
if weight_dtype in ["int2"]: |
|
return WeightDtype.int2 |
|
if weight_dtype in ["int3"]: |
|
return WeightDtype.int3 |
|
if weight_dtype in ["int4"]: |
|
return WeightDtype.int4 |
|
if weight_dtype in ["nf4"]: |
|
return WeightDtype.nf4 |
|
if weight_dtype in ["fp4"]: |
|
return WeightDtype.fp4 |
|
if weight_dtype in ["All"]: |
|
return WeightDtype.all |
|
if weight_dtype in ["float16"]: |
|
return WeightDtype.fp16 |
|
if weight_dtype in ["bfloat16"]: |
|
return WeightDtype.bf16 |
|
if weight_dtype in ["float32"]: |
|
return WeightDtype.fp32 |
|
return WeightDtype.Unknown |
|
|
|
class ComputeDtype(Enum): |
|
all = ModelDetails("All") |
|
fp16 = ModelDetails("float16") |
|
bf16 = ModelDetails("bfloat16") |
|
int8 = ModelDetails("int8") |
|
fp32 = ModelDetails("float32") |
|
|
|
|
|
Unknown = ModelDetails("?") |
|
|
|
def from_str(compute_dtype): |
|
if compute_dtype in ["bfloat16"]: |
|
return ComputeDtype.bf16 |
|
if compute_dtype in ["float16"]: |
|
return ComputeDtype.fp16 |
|
if compute_dtype in ["int8"]: |
|
return ComputeDtype.int8 |
|
if compute_dtype in ["float32"]: |
|
return ComputeDtype.fp32 |
|
if compute_dtype in ["All"]: |
|
return ComputeDtype.all |
|
return ComputeDtype.Unknown |
|
|
|
|
|
class GroupDtype(Enum): |
|
group_1 = ModelDetails("-1") |
|
group_1024 = ModelDetails("1024") |
|
group_256 = ModelDetails("256") |
|
group_128 = ModelDetails("128") |
|
group_64 = ModelDetails("64") |
|
group_32 = ModelDetails("32") |
|
|
|
group_all = ModelDetails("All") |
|
|
|
def from_str(compute_dtype): |
|
if compute_dtype in ["-1"]: |
|
return GroupDtype.group_1 |
|
if compute_dtype in ["1024"]: |
|
return GroupDtype.group_1024 |
|
if compute_dtype in ["256"]: |
|
return GroupDtype.group_256 |
|
if compute_dtype in ["128"]: |
|
return GroupDtype.group_128 |
|
if compute_dtype in ["64"]: |
|
return GroupDtype.group_64 |
|
if compute_dtype in ["32"]: |
|
return GroupDtype.group_32 |
|
return GroupDtype.group_all |
|
|
|
class Precision(Enum): |
|
|
|
|
|
qt_2bit = ModelDetails("2bit") |
|
qt_3bit = ModelDetails("3bit") |
|
qt_4bit = ModelDetails("4bit") |
|
qt_8bit = ModelDetails("8bit") |
|
qt_16bit = ModelDetails("16bit") |
|
qt_32bit = ModelDetails("32bit") |
|
Unknown = ModelDetails("?") |
|
|
|
def from_str(precision): |
|
|
|
|
|
|
|
|
|
if precision in ["2bit"]: |
|
return Precision.qt_2bit |
|
if precision in ["3bit"]: |
|
return Precision.qt_3bit |
|
if precision in ["4bit"]: |
|
return Precision.qt_4bit |
|
if precision in ["8bit"]: |
|
return Precision.qt_8bit |
|
if precision in ["16bit"]: |
|
return Precision.qt_16bit |
|
if precision in ["32bit"]: |
|
return Precision.qt_32bit |
|
return Precision.Unknown |
|
|
|
|
|
|
|
|
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn)] |
|
TYPES = [c.type for c in fields(AutoEvalColumn)] |
|
|
|
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] |
|
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] |
|
|
|
BENCHMARK_COLS = [t.value.col_name for t in Tasks] |
|
|
|
NUMERIC_INTERVALS = { |
|
"?": pd.Interval(-1, 0, closed="right"), |
|
"~1.5": pd.Interval(0, 2, closed="right"), |
|
"~3": pd.Interval(2, 4, closed="right"), |
|
"~7": pd.Interval(4, 9, closed="right"), |
|
"~13": pd.Interval(9, 20, closed="right"), |
|
|
|
|
|
|
|
} |
|
|
|
NUMERIC_MODELSIZE = { |
|
"?": pd.Interval(-1, 0, closed="right"), |
|
"~4": pd.Interval(0, 4, closed="right"), |
|
"~8": pd.Interval(4, 8, closed="right"), |
|
"~16": pd.Interval(8, 16, closed="right"), |
|
"~36": pd.Interval(16, 36, closed="right"), |
|
} |
|
|