lvkaokao
support fp32/fp16/bf16 eval.
653f44e
raw
history blame
15.2 kB
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
@dataclass
class Task:
benchmark: str
metric: str
col_name: str
class Tasks(Enum):
arc = Task("arc:challenge", "acc,none", "ARC-c")
arc_easy = Task("arc:easy", "acc,none", "ARC-e")
boolq = Task("boolq", "acc,none", "Boolq")
hellaswag = Task("hellaswag", "acc,none", "HellaSwag")
lambada_openai = Task("lambada:openai", "acc,none", "Lambada")
mmlu = Task("mmlu", "acc,none", "MMLU")
openbookqa = Task("openbookqa", "acc,none", "Openbookqa")
piqa = Task("piqa", "acc,none", "Piqa")
# truthfulqa:mc1 / truthfulqa:mc2 -- ?
truthfulqa_mc = Task("truthfulqa:mc1", "acc,none", "Truthfulqa")
# arc:challenge ?
# arc_challenge = Task("arc:challenge", "acc_norm,none", "Arc challenge")
# truthfulqa = Task("truthfulqa:mc", "mc2", "TruthfulQA")
winogrande = Task("winogrande", "acc,none", "Winogrande")
# gsm8k = Task("gsm8k", "acc", "GSM8K")
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
dummy: bool = False
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
for task in Tasks:
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", True)])
auto_eval_column_dict.append(["model_size", ColumnContent, ColumnContent("#Size (G)", "number", True)])
# Dummy column for the search bar (hidden by the custom CSS)
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, hidden=True)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["quant_type", ColumnContent, ColumnContent("Quant type", "str", False)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["weight_dtype", ColumnContent, ColumnContent("Weight dtype", "str", False)])
auto_eval_column_dict.append(["compute_dtype", ColumnContent, ColumnContent("Compute dtype", "str", False)])
auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False, hidden=True)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
auto_eval_column_dict.append(["double_quant", ColumnContent, ColumnContent("Double Quant", "bool", False)])
auto_eval_column_dict.append(["group_size", ColumnContent, ColumnContent("Group Size", "bool", False)])
# We use make dataclass to dynamically fill the scores from Tasks
# auto_eval_column_dict.sort(key=lambda x: x[0])
sorted_columns = sorted(auto_eval_column_dict[3:], key=lambda x: x[0])
sorted_auto_eval_column_dict = auto_eval_column_dict[:3] + sorted_columns
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
precision = ColumnContent("precision", "str", True)
weight_type = ColumnContent("weight_type", "str", "Original")
status = ColumnContent("status", "str", True)
baseline_row = {
AutoEvalColumn.model.name: "<p>Baseline</p>",
AutoEvalColumn.revision.name: "N/A",
AutoEvalColumn.precision.name: None,
AutoEvalColumn.merged.name: False,
AutoEvalColumn.average.name: 31.0,
AutoEvalColumn.arc.name: 25.0,
# AutoEvalColumn.hellaswag.name: 25.0,
# AutoEvalColumn.truthfulqa.name: 25.0,
AutoEvalColumn.winogrande.name: 50.0,
# AutoEvalColumn.gsm8k.name: 0.21,
AutoEvalColumn.dummy.name: "baseline",
AutoEvalColumn.model_type.name: "",
AutoEvalColumn.flagged.name: False,
# low-bite new params
AutoEvalColumn.mmlu.name: 25.0,
AutoEvalColumn.lambada_openai.name: 25.0,
AutoEvalColumn.hellaswag.name: 25.0,
AutoEvalColumn.piqa.name: 25.0,
AutoEvalColumn.truthfulqa_mc.name: 25.0,
AutoEvalColumn.openbookqa.name: 25.0,
AutoEvalColumn.boolq.name: True,
AutoEvalColumn.arc_easy.name: 25.0,
AutoEvalColumn.double_quant.name: False,
}
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
# HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide)
# MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ)
# TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf)
# Winogrande: https://leaderboard.allenai.org/winogrande/submissions/public
# GSM8K: paper
# Define the human baselines
human_baseline_row = {
AutoEvalColumn.model.name: "<p>Human performance</p>",
AutoEvalColumn.revision.name: "N/A",
AutoEvalColumn.precision.name: None,
AutoEvalColumn.average.name: 92.75,
AutoEvalColumn.merged.name: False,
AutoEvalColumn.arc.name: 80.0,
# AutoEvalColumn.hellaswag.name: 95.0,
# AutoEvalColumn.mmlu.name: 89.8,
# AutoEvalColumn.truthfulqa.name: 94.0,
AutoEvalColumn.winogrande.name: 94.0,
# AutoEvalColumn.gsm8k.name: 100,
AutoEvalColumn.dummy.name: "human_baseline",
AutoEvalColumn.model_type.name: "",
AutoEvalColumn.flagged.name: False,
}
@dataclass
class ModelDetails:
name: str
symbol: str = "" # emoji, only for the model type
"""
class ModelType(Enum):
PT = ModelDetails(name="GPTQ", symbol="🟢")
CPT = ModelDetails(name="AWQ", symbol="🟩")
FT = ModelDetails(name="llama.cpp", symbol="🔷")
chat = ModelDetails(name="Bisandbytes", symbol="🔵")
merges = ModelDetails(name="AutoRound", symbol="🍒")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "🔷" in type:
return ModelType.FT
if "continously pretrained" in type or "🟩" in type:
return ModelType.CPT
if "pretrained" in type or "🟢" in type:
return ModelType.PT
if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "⭕", "🔵"]]):
return ModelType.chat
if "merge" in type or "🍒" in type:
return ModelType.merges
return ModelType.Unknown
"""
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="🟢")
CPT = ModelDetails(name="continuously pretrained", symbol="🟩")
FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="🔷")
chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="🔵")
merges = ModelDetails(name="base merges and moerges", symbol="🍒")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "🔷" in type:
return ModelType.FT
if "continously pretrained" in type or "🟩" in type:
return ModelType.CPT
if "pretrained" in type or "🟢" in type or "quantization" in type:
return ModelType.PT
if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "⭕", "🔵"]]):
return ModelType.chat
if "merge" in type or "🍒" in type:
return ModelType.merges
return ModelType.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class QuantType(Enum):
gptq = ModelDetails(name="GPTQ", symbol="🟢")
aqlm = ModelDetails(name="AQLM", symbol="⭐")
awq = ModelDetails(name="AWQ", symbol="🟩")
llama_cpp = ModelDetails(name="llama.cpp", symbol="🔷")
bnb = ModelDetails(name="bitsandbytes", symbol="🔵")
autoround = ModelDetails(name="AutoRound", symbol="🍒")
Unknown = ModelDetails(name="?", symbol="?")
QuantType_None = ModelDetails(name="None", symbol="✖")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
def from_str(quant_dtype):
if quant_dtype in ["GPTQ"]:
return QuantType.gptq
if quant_dtype in ["AQLM"]:
return QuantType.aqlm
if quant_dtype in ["AWQ"]:
return QuantType.awq
if quant_dtype in ["llama.cpp"]:
return QuantType.llama_cpp
if quant_dtype in ["bitsandbytes"]:
return QuantType.bnb
if quant_dtype in ["AutoRound"]:
return QuantType.autoround
if quant_dtype in ["None"]:
return QuantType.QuantType_None
return QuantType.Unknown
class WeightDtype(Enum):
all = ModelDetails("All")
int2 = ModelDetails("int2")
int3 = ModelDetails("int3")
int4 = ModelDetails("int4")
nf4 = ModelDetails("nf4")
fp4 = ModelDetails("fp4")
fp16 = ModelDetails("float16")
bf16 = ModelDetails("bfloat16")
fp32 = ModelDetails("float32")
Unknown = ModelDetails("?")
def from_str(weight_dtype):
if weight_dtype in ["int2"]:
return WeightDtype.int2
if weight_dtype in ["int3"]:
return WeightDtype.int3
if weight_dtype in ["int4"]:
return WeightDtype.int4
if weight_dtype in ["nf4"]:
return WeightDtype.nf4
if weight_dtype in ["fp4"]:
return WeightDtype.fp4
if weight_dtype in ["All"]:
return WeightDtype.all
if weight_dtype in ["float16"]:
return WeightDtype.fp16
if weight_dtype in ["bfloat16"]:
return WeightDtype.bf16
if weight_dtype in ["float32"]:
return WeightDtype.fp32
return WeightDtype.Unknown
class ComputeDtype(Enum):
all = ModelDetails("All")
fp16 = ModelDetails("float16")
bf16 = ModelDetails("bfloat16")
int8 = ModelDetails("int8")
fp32 = ModelDetails("float32")
Unknown = ModelDetails("?")
def from_str(compute_dtype):
if compute_dtype in ["bfloat16"]:
return ComputeDtype.bf16
if compute_dtype in ["float16"]:
return ComputeDtype.fp16
if compute_dtype in ["int8"]:
return ComputeDtype.int8
if compute_dtype in ["float32"]:
return ComputeDtype.fp32
if compute_dtype in ["All"]:
return ComputeDtype.all
return ComputeDtype.Unknown
class GroupDtype(Enum):
group_1 = ModelDetails("-1")
group_1024 = ModelDetails("1024")
group_256 = ModelDetails("256")
group_128 = ModelDetails("128")
group_64 = ModelDetails("64")
group_32 = ModelDetails("32")
group_all = ModelDetails("All")
def from_str(compute_dtype):
if compute_dtype in ["-1"]:
return GroupDtype.group_1
if compute_dtype in ["1024"]:
return GroupDtype.group_1024
if compute_dtype in ["256"]:
return GroupDtype.group_256
if compute_dtype in ["128"]:
return GroupDtype.group_128
if compute_dtype in ["64"]:
return GroupDtype.group_64
if compute_dtype in ["32"]:
return GroupDtype.group_32
return GroupDtype.group_all
class Precision(Enum):
# float16 = ModelDetails("float16")
# bfloat16 = ModelDetails("bfloat16")
qt_2bit = ModelDetails("2bit")
qt_3bit = ModelDetails("3bit")
qt_4bit = ModelDetails("4bit")
qt_8bit = ModelDetails("8bit")
qt_16bit = ModelDetails("16bit")
qt_32bit = ModelDetails("32bit")
Unknown = ModelDetails("?")
def from_str(precision):
# if precision in ["torch.float16", "float16"]:
# return Precision.float16
# if precision in ["torch.bfloat16", "bfloat16"]:
# return Precision.bfloat16
if precision in ["2bit"]:
return Precision.qt_2bit
if precision in ["3bit"]:
return Precision.qt_3bit
if precision in ["4bit"]:
return Precision.qt_4bit
if precision in ["8bit"]:
return Precision.qt_8bit
if precision in ["16bit"]:
return Precision.qt_16bit
if precision in ["32bit"]:
return Precision.qt_32bit
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
NUMERIC_INTERVALS = {
"?": pd.Interval(-1, 0, closed="right"),
"~1.5": pd.Interval(0, 2, closed="right"),
"~3": pd.Interval(2, 4, closed="right"),
"~7": pd.Interval(4, 9, closed="right"),
"~13": pd.Interval(9, 20, closed="right"),
# "~35": pd.Interval(20, 45, closed="right"),
# "~60": pd.Interval(45, 70, closed="right"),
# "70+": pd.Interval(70, 10000, closed="right"),
}
NUMERIC_MODELSIZE = {
"?": pd.Interval(-1, 0, closed="right"),
"~4": pd.Interval(0, 4, closed="right"),
"~8": pd.Interval(4, 8, closed="right"),
"~16": pd.Interval(8, 16, closed="right"),
"~36": pd.Interval(16, 36, closed="right"),
}