lvkaokao
support fp32/fp16/bf16 eval.
653f44e
raw
history blame
11 kB
import json
import os
import re
from collections import defaultdict
from datetime import datetime, timedelta, timezone
import huggingface_hub
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo, get_safetensors_metadata
from transformers import AutoConfig, AutoTokenizer
from src.envs import HAS_HIGHER_RATE_LIMIT
from huggingface_hub import hf_hub_download, HfFileSystem
from huggingface_hub.utils import validate_repo_id
from pathlib import Path
import fnmatch
from huggingface_hub.hf_api import get_hf_file_metadata, hf_hub_url
# ht to @Wauplin, thank you for the snippet!
# See https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/317
def check_model_card(repo_id: str) -> tuple[bool, str]:
# Returns operation status, and error message
try:
card = ModelCard.load(repo_id)
except huggingface_hub.utils.EntryNotFoundError:
return False, "Please add a model card to your model to explain how you trained/fine-tuned it.", None
# Enforce license metadata
if card.data.license is None:
if not ("license_name" in card.data and "license_link" in card.data):
return False, (
"License not found. Please add a license to your model card using the `license` metadata or a"
" `license_name`/`license_link` pair."
), None
# Enforce card content
if len(card.text) < 200:
return False, "Please add a description to your model card, it is too short.", None
return True, "", card
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=True, test_tokenizer=False) -> tuple[bool, str, AutoConfig]:
try:
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) #, force_download=True)
if test_tokenizer:
try:
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
except ValueError as e:
return (
False,
f"uses a tokenizer which is not in a transformers release: {e}",
None
)
except Exception as e:
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
return True, None, config
except ValueError as e:
return (
False,
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
None
)
except Exception as e:
if "You are trying to access a gated repo." in str(e):
return True, "uses a gated model.", None
return False, f"was not found or misconfigured on the hub! Error raised was {e.args[0]}", None
def get_model_size(model_info: ModelInfo, precision: str):
size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
safetensors = None
try:
safetensors = get_safetensors_metadata(model_info.id)
num_parameters = 0
mem = 0
for key in safetensors.parameter_count:
if key in ["F16", "BF16"]:
mem += safetensors.parameter_count[key] * 2
else:
mem += safetensors.parameter_count[key] * 4
num_parameters += safetensors.parameter_count[key]
params_b = round(num_parameters / 1e9, 2)
size_gb = round(mem / 1e9,2)
return params_b, size_gb
except Exception as e:
print(str(e))
if safetensors is not None:
model_size = round(sum(safetensors.parameter_count.values()) / 1e9, 3)
else:
try:
size_match = re.search(size_pattern, model_info.id.lower())
model_size = size_match.group(0)
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
except AttributeError as e:
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
# size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
# model_size = size_factor * model_size
if precision == "16bit":
size_gb = model_size * 2
else:
size_gb = model_size * 4
return model_size, size_gb
KNOWN_SIZE_FACTOR = {
"gptq": {"4bit": 8, "8bit": 4, "2bit": 8, "3bit": 12},
"awq": {"4bit": 8},
"bitsandbytes": {"4bit": 2},
"aqlm": {"4bit": 8, "8bit": 4, "2bit": 8, "3bit": 6},
}
BYTES = {
"I32": 4,
"I16": 2,
"I8": 1,
"F16": 2,
"BF16": 2,
"F32": 4,
"U8": 1}
def get_quantized_model_parameters_memory(model_info: ModelInfo, quant_method="", bits="4bit"):
try:
safetensors = get_safetensors_metadata(model_info.id)
num_parameters = 0
mem = 0
for key in safetensors.parameter_count:
mem += safetensors.parameter_count[key] * BYTES[key]
if key in ["I32", "U8", "I16", "I8"]:
param = safetensors.parameter_count[key] * KNOWN_SIZE_FACTOR[quant_method][bits]
if key == "I8":
param = param / 2
num_parameters += param
params_b = round(num_parameters / 1e9, 2)
size_gb = round(mem / 1e9,2)
return params_b, size_gb
except Exception as e:
print(str(e))
filenames = [sib.rfilename for sib in model_info.siblings]
if "pytorch_model.bin" in filenames:
url = hf_hub_url(model_info.id, filename="pytorch_model.bin")
meta = get_hf_file_metadata(url)
params_b = round(meta.size * 2 / 1e9, 2)
size_gb = round(meta.size / 1e9, 2)
return params_b, size_gb
if "pytorch_model.bin.index.json" in filenames:
index_path = hf_hub_download(model_info.id, filename="pytorch_model.bin.index.json")
"""
{
"metadata": {
"total_size": 28272820224
},....
"""
size = json.load(open(index_path))
bytes_per_param = 2
if ("metadata" in size) and ("total_size" in size["metadata"]):
return round(size["metadata"]["total_size"] / bytes_per_param / 1e9, 2), \
round(size["metadata"]["total_size"] / 1e9, 2)
return None, None
def get_model_arch(model_info: ModelInfo):
return model_info.config.get("architectures", "Unknown")
def user_submission_permission(org_or_user, users_to_submission_dates, rate_limit_period, rate_limit_quota):
if org_or_user not in users_to_submission_dates:
return True, ""
submission_dates = sorted(users_to_submission_dates[org_or_user])
time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ")
submissions_after_timelimit = [d for d in submission_dates if d > time_limit]
num_models_submitted_in_period = len(submissions_after_timelimit)
if org_or_user in HAS_HIGHER_RATE_LIMIT:
rate_limit_quota = 2 * rate_limit_quota
if num_models_submitted_in_period > rate_limit_quota:
error_msg = f"Organisation or user `{org_or_user}`"
error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
error_msg += f"in the last {rate_limit_period} days.\n"
error_msg += (
"Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
)
return False, error_msg
return True, ""
def already_submitted_models(requested_models_dir: str) -> set[str]:
depth = 1
file_names = []
users_to_submission_dates = defaultdict(list)
for root, _, files in os.walk(requested_models_dir):
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
if current_depth == depth:
for file in files:
if not file.endswith(".json"):
continue
with open(os.path.join(root, file), "r") as f:
info = json.load(f)
# {quant_type}_{precision}_{weight_dtype}_{compute_dtype}.json
quant_type = info.get("quant_type", "None")
weight_dtype = info.get("weight_dtype", "None")
compute_dtype = info.get("compute_dtype", "None")
file_names.append(f"{info['model']}_{info['revision']}_{quant_type}_{info['precision']}_{weight_dtype}_{compute_dtype}")
# Select organisation
if info["model"].count("/") == 0 or "submitted_time" not in info:
continue
try:
organisation, _ = info["model"].split("/")
except:
print(info["model"])
organisation = "local" # temporary "local"
users_to_submission_dates[organisation].append(info["submitted_time"])
return set(file_names), users_to_submission_dates
def get_model_tags(model_card, model: str):
is_merge_from_metadata = False
is_moe_from_metadata = False
tags = []
if model_card is None:
return tags
if model_card.data.tags:
is_merge_from_metadata = any([tag in model_card.data.tags for tag in ["merge", "moerge", "mergekit", "lazymergekit"]])
is_moe_from_metadata = any([tag in model_card.data.tags for tag in ["moe", "moerge"]])
is_merge_from_model_card = any(keyword in model_card.text.lower() for keyword in ["merged model", "merge model", "moerge"])
if is_merge_from_model_card or is_merge_from_metadata:
tags.append("merge")
is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in ["moe", "mixtral"])
is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
tags.append("moe")
return tags
def is_gguf_on_hub(repo_id: str, filename="*Q4_0.gguf"):
validate_repo_id(repo_id)
hffs = HfFileSystem()
files = [
file["name"] if isinstance(file, dict) else file
for file in hffs.ls(repo_id)
]
# split each file into repo_id, subfolder, filename
file_list: List[str] = []
for file in files:
rel_path = Path(file).relative_to(repo_id)
file_list.append(str(rel_path))
print(file_list)
matching_files = [file for file in file_list if fnmatch.fnmatch(file, filename)] # type: ignore
if len(matching_files) > 0:
return True, None, matching_files, None
matching_files = [file for file in file_list if fnmatch.fnmatch(file, filename.lower())]
if len(matching_files) > 0:
return True, None, matching_files, filename.lower()
else:
return False, f"the model {repo_id} don't contains any {filename}.", None, None