import json import os import re from collections import defaultdict from datetime import datetime, timedelta, timezone import huggingface_hub from huggingface_hub import ModelCard from huggingface_hub.hf_api import ModelInfo, get_safetensors_metadata from transformers import AutoConfig, AutoTokenizer from src.envs import HAS_HIGHER_RATE_LIMIT from huggingface_hub import hf_hub_download, HfFileSystem from huggingface_hub.utils import validate_repo_id from pathlib import Path import fnmatch from huggingface_hub.hf_api import get_hf_file_metadata, hf_hub_url # ht to @Wauplin, thank you for the snippet! # See https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/317 def check_model_card(repo_id: str) -> tuple[bool, str]: # Returns operation status, and error message try: card = ModelCard.load(repo_id) except huggingface_hub.utils.EntryNotFoundError: return False, "Please add a model card to your model to explain how you trained/fine-tuned it.", None # Enforce license metadata if card.data.license is None: if not ("license_name" in card.data and "license_link" in card.data): return False, ( "License not found. Please add a license to your model card using the `license` metadata or a" " `license_name`/`license_link` pair." ), None # Enforce card content if len(card.text) < 200: return False, "Please add a description to your model card, it is too short.", None return True, "", card def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=True, test_tokenizer=False) -> tuple[bool, str, AutoConfig]: try: config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) #, force_download=True) if test_tokenizer: try: tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) except ValueError as e: return ( False, f"uses a tokenizer which is not in a transformers release: {e}", None ) except Exception as e: return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None) return True, None, config except ValueError as e: return ( False, "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", None ) except Exception as e: if "You are trying to access a gated repo." in str(e): return True, "uses a gated model.", None return False, f"was not found or misconfigured on the hub! Error raised was {e.args[0]}", None def get_model_size(model_info: ModelInfo, precision: str): size_pattern = re.compile(r"(\d+\.)?\d+(b|m)") safetensors = None try: safetensors = get_safetensors_metadata(model_info.id) except Exception as e: print(e) if safetensors is not None: model_size = round(sum(safetensors.parameter_count.values()) / 1e9, 3) else: try: size_match = re.search(size_pattern, model_info.id.lower()) model_size = size_match.group(0) model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3) except AttributeError as e: return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1 # model_size = size_factor * model_size return model_size KNOWN_SIZE_FACTOR = { "gptq": {"4bit": 8, "8bit": 4}, "awq": {"4bit": 8}, "bitsandbytes": {"4bit": 2} } BYTES = { "I32": 4, "F16": 2, "BF16": 2, "F32": 4, "U8": 1} def get_quantized_model_parameters_memory(model_info: ModelInfo, quant_method="", bits="4bit"): try: safetensors = get_safetensors_metadata(model_info.id) num_parameters = 0 mem = 0 for key in safetensors.parameter_count: mem += safetensors.parameter_count[key] * BYTES[key] if key in ["I32", "U8"]: num_parameters += safetensors.parameter_count[key] * KNOWN_SIZE_FACTOR[quant_method][bits] params_b = round(num_parameters / 1e9, 2) size_gb = round(mem / 1e9,2) return params_b, size_gb except Exception as e: print(str(e)) filenames = [sib.rfilename for sib in model_info.siblings] if "pytorch_model.bin" in filenames: url = hf_hub_url(model_info.id, filename="pytorch_model.bin") meta = get_hf_file_metadata(url) params_b = round(meta.size * 2 / 1e9, 2) size_gb = round(meta.size / 1e9, 2) return params_b, size_gb if "pytorch_model.bin.index.json" in filenames: index_path = hf_hub_download(model_info.id, filename="pytorch_model.bin.index.json") """ { "metadata": { "total_size": 28272820224 },.... """ size = json.load(open(index_path)) bytes_per_param = 2 if ("metadata" in size) and ("total_size" in size["metadata"]): return round(size["metadata"]["total_size"] / bytes_per_param / 1e9, 2), \ round(size["metadata"]["total_size"] / 1e9, 2) return None, None def get_model_arch(model_info: ModelInfo): return model_info.config.get("architectures", "Unknown") def user_submission_permission(org_or_user, users_to_submission_dates, rate_limit_period, rate_limit_quota): if org_or_user not in users_to_submission_dates: return True, "" submission_dates = sorted(users_to_submission_dates[org_or_user]) time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ") submissions_after_timelimit = [d for d in submission_dates if d > time_limit] num_models_submitted_in_period = len(submissions_after_timelimit) if org_or_user in HAS_HIGHER_RATE_LIMIT: rate_limit_quota = 2 * rate_limit_quota if num_models_submitted_in_period > rate_limit_quota: error_msg = f"Organisation or user `{org_or_user}`" error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard " error_msg += f"in the last {rate_limit_period} days.\n" error_msg += ( "Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗" ) return False, error_msg return True, "" def already_submitted_models(requested_models_dir: str) -> set[str]: depth = 1 file_names = [] users_to_submission_dates = defaultdict(list) for root, _, files in os.walk(requested_models_dir): current_depth = root.count(os.sep) - requested_models_dir.count(os.sep) if current_depth == depth: for file in files: if not file.endswith(".json"): continue with open(os.path.join(root, file), "r") as f: info = json.load(f) # {quant_type}_{precision}_{weight_dtype}_{compute_dtype}.json quant_type = info.get("quant_type", "None") weight_dtype = info.get("weight_dtype", "None") compute_dtype = info.get("compute_dtype", "None") file_names.append(f"{info['model']}_{info['revision']}_{quant_type}_{info['precision']}_{weight_dtype}_{compute_dtype}") # Select organisation if info["model"].count("/") == 0 or "submitted_time" not in info: continue try: organisation, _ = info["model"].split("/") except: print(info["model"]) organisation = "local" # temporary "local" users_to_submission_dates[organisation].append(info["submitted_time"]) return set(file_names), users_to_submission_dates def get_model_tags(model_card, model: str): is_merge_from_metadata = False is_moe_from_metadata = False tags = [] if model_card is None: return tags if model_card.data.tags: is_merge_from_metadata = any([tag in model_card.data.tags for tag in ["merge", "moerge", "mergekit", "lazymergekit"]]) is_moe_from_metadata = any([tag in model_card.data.tags for tag in ["moe", "moerge"]]) is_merge_from_model_card = any(keyword in model_card.text.lower() for keyword in ["merged model", "merge model", "moerge"]) if is_merge_from_model_card or is_merge_from_metadata: tags.append("merge") is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in ["moe", "mixtral"]) is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-") if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata: tags.append("moe") return tags def is_gguf_on_hub(repo_id: str, filename="*Q4_0.gguf"): validate_repo_id(repo_id) hffs = HfFileSystem() files = [ file["name"] if isinstance(file, dict) else file for file in hffs.ls(repo_id) ] # split each file into repo_id, subfolder, filename file_list: List[str] = [] for file in files: rel_path = Path(file).relative_to(repo_id) file_list.append(str(rel_path)) print(file_list) matching_files = [file for file in file_list if fnmatch.fnmatch(file, filename)] # type: ignore if len(matching_files) > 0: return True, None, matching_files, None matching_files = [file for file in file_list if fnmatch.fnmatch(file, filename.lower())] if len(matching_files) > 0: return True, None, matching_files, filename.lower() else: return False, f"the model {repo_id} don't contains any {filename}.", None, None