File size: 6,487 Bytes
cd2355c
 
278fc7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd2355c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278fc7f
cd2355c
278fc7f
cd2355c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278fc7f
cd2355c
278fc7f
cd2355c
278fc7f
cd2355c
 
 
 
 
 
 
 
 
 
 
 
278fc7f
cd2355c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278fc7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd2355c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278fc7f
 
 
 
 
 
cd2355c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
DEPLOY_TEXT = f"""

# ๐Ÿš€ Deployment Tips

A collection of powerful models is valuable, but ultimately, you need to be able to use them effectively. 
This tab is dedicated to providing guidance and code snippets for performing inference with leaderboard models on Intel platforms.

Below, you'll find a table of open-source software options for inference, along with the supported Intel Hardware Platforms. 
A ๐Ÿš€ indicates that inference with the associated software package is supported on the hardware. We hope this information 
helps you choose the best option for your specific use case. Happy building!

<div style="display: flex; justify-content: center;">
<table border="1">
  <tr>
    <th>Inference Software</th>
    <th>Gaudi</th>
    <th>Xeon</th>
    <th>GPU Max</th>
    <th>Arc GPU</th>
    <th>Core Ultra</th>
  </tr>
  <tr>
    <td>Optimum Habana</td>
    <td>๐Ÿš€</td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
  </tr>
  <tr>
    <td>Intel Extension for PyTorch</td>
    <td></td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
    <td></td>
  </tr>
  <tr>
    <td>Intel Extension for Transformers</td>
    <td></td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
    <td></td>
  </tr>
  <tr>
    <td>OpenVINO</td>
    <td></td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
  </tr>
  <tr>
    <td>BigDL</td>
    <td></td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
  </tr>
    <tr>
    <td>NPU Acceleration Library</td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td>๐Ÿš€</td>
  </tr>
</tr>
    <tr>
    <td>PyTorch</td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
  </tr>
</tr>
    <tr>
    <td>Tensorflow</td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
    <td>๐Ÿš€</td>
</tr>
</table>
</div>


<hr>

# Intelยฎ Gaudi Accelerators
Habana's SDK, Intel Gaudi Software, supports PyTorch and DeepSpeed for accelerating LLM training and inference. 
The Intel Gaudi Software graph compiler will optimize the execution of the operations accumulated in the graph 
(e.g. operator fusion, data layout management, parallelization, pipelining and memory management, 
and graph-level optimizations).

Optimum Habana provides covenient functionality for various tasks, below you'll find the command line
snippet that you would run to perform inference on Gaudi with meta-llama/Llama-2-7b-hf.

The "run_generation.py" script below can be found [here](https://github.com/huggingface/optimum-habana/tree/main/examples/text-generation)

```bash
python run_generation.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--use_hpu_graphs \
--use_kv_cache \
--max_new_tokens 100 \
--do_sample \
--batch_size 2 \
--prompt "Hello world" "How are you?"

```
<hr>

# Intelยฎ Max Series GPU

### INT4 Inference (GPU)
```python
import intel_extension_for_pytorch as ipex
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
from transformers import AutoTokenizer

device_map = "xpu"
model_name ="Qwen/Qwen-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
prompt = "When winter becomes spring, the flowers..."
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device_map)

model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
                                              device_map=device_map, load_in_4bit=True)

model = ipex.optimize_transformers(model, inplace=True, dtype=torch.float16, woq=True, device=device_map)

output = model.generate(inputs)
```
<hr>

# Intelยฎ Xeon CPUs

### Intel Extension for PyTorch - Optimum Intel (no quantization)
Requires installing/updating optimum `pip install --upgrade-strategy eager optimum[ipex]
`
```python
from optimum.intel import IPEXModelForCausalLM
from transformers import AutoTokenizer, pipeline

model = IPEXModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
results = pipe("A fisherman at sea...")
```

### Intelยฎ Extension for PyTorch - Mixed Precision (fp32 and bf16)
```python
import torch
import intel_extension_for_pytorch as ipex
import transformers

model= transformers.AutoModelForCausalLM(model_name_or_path).eval()

dtype = torch.float # or torch.bfloat16
model = ipex.llm.optimize(model, dtype=dtype)

# generation inference loop
with torch.inference_mode():
    model.generate()
```

### Intelยฎ Extension for Transformers - INT4 Inference (CPU)
```python
from transformers import AutoTokenizer
from intel_extension_for_transformers.transformers import AutoModelForCausalLM
model_name = "Intel/neural-chat-7b-v3-1"     
prompt = "When winter becomes spring, the flowers..."

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
inputs = tokenizer(prompt, return_tensors="pt").input_ids

model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=True)
outputs = model.generate(inputs)


```

<hr>

# Intelยฎ Core Ultra (NPUs and iGPUs)


### Intelยฎ NPU Acceleration Library
```python
from transformers import AutoTokenizer, TextStreamer, AutoModelForCausalLM
import intel_npu_acceleration_library
import torch

model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"

model = AutoModelForCausalLM.from_pretrained(model_id, use_cache=True).eval()
tokenizer = AutoTokenizer.from_pretrained(model_id, use_default_system_prompt=True)
tokenizer.pad_token_id = tokenizer.eos_token_id
streamer = TextStreamer(tokenizer, skip_special_tokens=True)

print("Compile model for the NPU")
model = intel_npu_acceleration_library.compile(model, dtype=torch.int8)

query = input("Ask something: ")
prefix = tokenizer(query, return_tensors="pt")["input_ids"]

generation_kwargs = dict(
   input_ids=prefix,
   streamer=streamer,
   do_sample=True,
   top_k=50,
   top_p=0.9,
   max_new_tokens=512,
)

print("Run inference")
_ = model.generate(**generation_kwargs)
```

### OpenVINO Toolking with Optimum Habana

```python
from optimum.intel import OVModelForCausalLM
from transformers import AutoTokenizer, pipeline

model_id = "helenai/gpt2-ov"
model = OVModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

pipe("In the spring, beautiful flowers bloom...")

```

<hr>

# Intel ARC GPUs

Coming Soon!


"""