eduardo-alvarez commited on
Commit
16d04aa
β€’
1 Parent(s): fa953d9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -49
app.py CHANGED
@@ -51,55 +51,55 @@ with demo:
51
  #chat_model_selection = chat_model_dropdown.value
52
  chat_model_selection = 'Intel/neural-chat-7b-v1-1'
53
 
54
- def call_api_and_stream_response(query, chat_model):
55
- """
56
- Call the API endpoint and yield characters as they are received.
57
- This function simulates streaming by yielding characters one by one.
58
- """
59
- url = inference_endpoint_url
60
- params = {"query": query, "selected_model": chat_model}
61
- with requests.get(url, json=params, stream=True) as r: # Use params for query parameters
62
- for chunk in r.iter_content(chunk_size=1):
63
- if chunk:
64
- yield chunk.decode()
65
-
66
- def get_response(query, history):
67
- """
68
- Wrapper function to call the streaming API and compile the response.
69
- """
70
- response = ''
71
- for char in call_api_and_stream_response(query, chat_model=chat_model_selection):
72
- if char == '<': # This seems to be your stopping condition; adjust as needed.
73
- break
74
- response += char
75
- yield [(f"πŸ€– Response from LLM: {chat_model_selection}", response)] # Correct format for Gradio Chatbot
76
-
77
- with gr.Blocks() as chat_interface:
78
- chatbot = gr.Chatbot()
79
- msg = gr.Textbox()
80
- submit = gr.Button("Submit")
81
- clear = gr.Button("Clear")
82
-
83
- def user(user_message, history):
84
- return "", history + [[user_message, None]]
85
-
86
- def clear_chat(*args):
87
- return [] # Returning an empty list to signify clearing the chat, adjust as per Gradio's capabilities
88
-
89
- submit.click(
90
- fn=get_response,
91
- inputs=[msg, chatbot],
92
- outputs=chatbot
93
- )
94
-
95
- clear.click(
96
- fn=clear_chat,
97
- inputs=None,
98
- outputs=chatbot
99
- )
100
-
101
- chat_interface.queue()
102
- chat_interface.launch()
103
 
104
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
105
  with gr.TabItem("πŸ† LLM Leadeboard", elem_id="llm-benchmark-table", id=0):
 
51
  #chat_model_selection = chat_model_dropdown.value
52
  chat_model_selection = 'Intel/neural-chat-7b-v1-1'
53
 
54
+ #def call_api_and_stream_response(query, chat_model):
55
+ # """
56
+ # Call the API endpoint and yield characters as they are received.
57
+ # This function simulates streaming by yielding characters one by one.
58
+ # """
59
+ # url = inference_endpoint_url
60
+ # params = {"query": query, "selected_model": chat_model}
61
+ # with requests.get(url, json=params, stream=True) as r: # Use params for query parameters
62
+ # for chunk in r.iter_content(chunk_size=1):
63
+ # if chunk:
64
+ # yield chunk.decode()
65
+ #
66
+ #def get_response(query, history):
67
+ # """
68
+ # Wrapper function to call the streaming API and compile the response.
69
+ # """
70
+ # response = ''
71
+ # for char in call_api_and_stream_response(query, chat_model=chat_model_selection):
72
+ # if char == '<': # This seems to be your stopping condition; adjust as needed.
73
+ # break
74
+ # response += char
75
+ # yield [(f"πŸ€– Response from LLM: {chat_model_selection}", response)] # Correct format for Gradio Chatbot
76
+ #
77
+ #with gr.Blocks() as chat_interface:
78
+ # chatbot = gr.Chatbot()
79
+ # msg = gr.Textbox()
80
+ # submit = gr.Button("Submit")
81
+ # clear = gr.Button("Clear")
82
+ #
83
+ # def user(user_message, history):
84
+ # return "", history + [[user_message, None]]
85
+ #
86
+ # def clear_chat(*args):
87
+ # return [] # Returning an empty list to signify clearing the chat, adjust as per Gradio's capabilities
88
+ #
89
+ # submit.click(
90
+ # fn=get_response,
91
+ # inputs=[msg, chatbot],
92
+ # outputs=chatbot
93
+ # )
94
+ #
95
+ # clear.click(
96
+ # fn=clear_chat,
97
+ # inputs=None,
98
+ # outputs=chatbot
99
+ # )
100
+ #
101
+ #chat_interface.queue()
102
+ #chat_interface.launch()
103
 
104
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
105
  with gr.TabItem("πŸ† LLM Leadeboard", elem_id="llm-benchmark-table", id=0):