Invicto69 commited on
Commit
d3b64d7
·
verified ·
1 Parent(s): 204372e

Synced repo using 'sync_with_huggingface' Github Action

Browse files
data/ind_nifty100list.csv ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ "SYMBOL","OPEN","HIGH","LOW","PREV. CLOSE","LTP","INDICATIVE CLOSE","CHNG","%CHNG","VOLUME (shares)","VALUE (₹ Crores)","52W H","52W L","30 D %CHNG","365 D % CHNG 25-Jan-2024"
2
+ "NIFTY 100","23,810.20","23,930.10","23,618.10","23,823.25","23,660.20","-","-163.05","-0.68","52,89,66,338","34,493.22","27,335.65","21,934.80","-3.71","9.20"
3
+ "HINDUNILVR","2,332.85","2,380.80","2,323.00","2,321.70","2,380.10","-","58.40","2.52","16,88,664","398.35","3,035.00","2,172.05","1.39","-2.48"
4
+ "BRITANNIA","5,037.70","5,108.00","5,013.15","5,012.60","5,100.00","-","87.40","1.74","5,09,954","258.96","6,469.90","4,641.00","7.53","-0.78"
5
+ "LODHA","1,077.00","1,109.00","1,076.00","1,082.30","1,100.00","-","17.70","1.64","25,66,066","281.53","1,649.95","977.35","-21.63","4.12"
6
+ "EICHERMOT","5,134.00","5,224.50","5,115.05","5,116.20","5,190.25","-","74.05","1.45","7,30,641","378.67","5,385.70","3,562.45","8.63","43.96"
7
+ "GRASIM","2,466.35","2,514.05","2,453.45","2,461.15","2,495.00","-","33.85","1.38","15,10,105","375.85","2,877.75","2,016.55","-0.44","19.95"
8
+ "ICICIBANK","1,203.10","1,218.00","1,202.00","1,201.75","1,213.70","-","11.95","0.99","92,16,792","1,114.48","1,362.35","985.25","-6.79","19.73"
9
+ "TATACONSUM","988.75","1,004.00","986.40","983.90","992.80","-","8.90","0.90","22,01,712","219.17","1,256.44","882.90","9.37","-12.70"
10
+ "BAJAJHLDNG","11,160.05","11,310.00","11,101.40","11,198.30","11,290.00","-","91.70","0.82","28,427","32.03","13,238.00","7,659.95","2.19","37.77"
11
+ "WIPRO","319.00","322.50","316.60","317.70","319.95","-","2.25","0.71","1,74,79,586","559.19","324.60","208.50","4.85","-31.89"
12
+ "INDIGO","4,162.10","4,269.80","4,126.05","4,134.80","4,162.25","-","27.45","0.66","14,81,820","621.17","5,035.00","2,847.00","-9.77","45.36"
13
+ "TECHM","1,719.00","1,736.40","1,705.35","1,713.40","1,724.00","-","10.60","0.62","12,57,165","216.63","1,807.70","1,162.95","1.06","30.33"
14
+ "POWERGRID","295.30","302.50","294.35","294.35","296.00","-","1.65","0.56","1,11,42,914","333.05","366.25","235.00","-4.60","20.51"
15
+ "INFY","1,865.50","1,894.90","1,864.25","1,865.45","1,875.00","-","9.55","0.51","48,87,027","919.52","2,006.45","1,358.35","-1.76","12.36"
16
+ "NESTLEIND","2,202.00","2,222.75","2,190.10","2,198.95","2,209.90","-","10.95","0.50","6,63,600","146.74","2,778.00","2,145.40","1.90","-11.05"
17
+ "BHARTIARTL","1,634.05","1,661.90","1,634.05","1,636.00","1,641.45","-","5.45","0.33","36,20,058","596.16","1,779.00","1,097.65","3.84","41.73"
18
+ "ITC","439.40","445.00","439.05","440.20","441.40","-","1.20","0.27","96,65,384","427.72","528.50","399.35","-7.70","-3.08"
19
+ "VBL","539.00","548.70","536.90","540.40","541.60","-","1.20","0.22","30,64,139","165.99","681.12","488.40","-13.65","-56.92"
20
+ "JSWSTEEL","930.00","953.00","925.15","929.90","931.95","-","2.05","0.22","35,38,998","332.71","1,063.00","761.75","1.15","14.31"
21
+ "AMBUJACEM","551.90","561.90","547.00","548.80","550.00","-","1.20","0.22","38,59,868","214.68","706.95","453.05","1.60","-1.49"
22
+ "TCS","4,104.00","4,178.00","4,104.00","4,145.45","4,153.10","-","7.65","0.18","19,10,099","793.76","4,592.25","3,591.50","-0.65","8.98"
23
+ "NTPC","324.80","329.90","322.10","323.65","324.00","-","0.35","0.11","74,92,600","243.87","448.45","296.85","-3.47","2.83"
24
+ "BAJAJ-AUTO","8,414.40","8,489.95","8,360.00","8,399.95","8,409.00","-","9.05","0.11","2,32,317","196.03","12,774.00","7,028.20","-4.29","10.58"
25
+ "TATASTEEL","130.50","133.20","129.31","130.37","130.50","-","0.13","0.10","3,70,92,106","485.94","184.60","122.62","-7.58","-3.00"
26
+ "TATAPOWER","362.75","370.70","362.20","362.75","363.00","-","0.25","0.07","79,66,520","291.85","494.85","338.40","-9.01","-0.47"
27
+ "HDFCLIFE","620.55","625.00","613.30","621.00","621.30","-","0.30","0.05","17,93,560","111.34","761.20","511.40","-0.22","7.27"
28
+ "TITAN","3,407.00","3,447.65","3,380.45","3,398.55","3,398.00","-","-0.55","-0.02","5,64,244","192.20","3,886.95","3,055.65","1.45","-9.76"
29
+ "HINDALCO","608.70","615.35","599.90","608.25","607.60","-","-0.65","-0.11","46,08,870","280.23","772.65","496.35","-3.28","7.00"
30
+ "BAJFINANCE","7,443.25","7,505.00","7,338.30","7,443.25","7,430.00","-","-13.25","-0.18","6,79,687","506.11","7,824.00","6,187.80","9.26","4.98"
31
+ "SBIN","749.90","753.70","739.00","745.90","744.50","-","-1.40","-0.19","1,05,79,213","789.54","912.00","603.10","-8.36","21.44"
32
+ "AXISBANK","948.00","961.80","946.10","951.05","948.55","-","-2.50","-0.26","1,44,21,921","1,376.02","1,339.65","946.10","-12.09","-8.99"
33
+ "DABUR","524.65","527.00","518.60","524.60","522.35","-","-2.25","-0.43","10,31,251","53.89","672.00","489.20","2.29","-1.87"
34
+ "LTIM","6,023.60","6,047.95","5,961.60","6,002.05","5,975.00","-","-27.05","-0.45","2,19,285","131.77","6,767.95","4,513.55","4.76","9.16"
35
+ "TORNTPHARM","3,270.75","3,283.85","3,210.00","3,263.75","3,248.90","-","-14.85","-0.45","3,91,085","126.81","3,590.70","2,414.00","-4.44","31.33"
36
+ "COALINDIA","386.05","392.25","381.70","385.80","384.00","-","-1.80","-0.47","53,51,964","206.47","543.55","361.25","-0.38","-1.63"
37
+ "DMART","3,598.00","3,608.50","3,535.00","3,598.35","3,581.35","-","-17.00","-0.47","2,88,983","103.33","5,484.85","3,399.00","3.48","-4.13"
38
+ "IRFC","141.60","143.18","139.00","141.37","140.68","-","-0.69","-0.49","1,58,43,304","222.88","229.00","116.65","-4.86","-19.08"
39
+ "ASIANPAINT","2,283.00","2,296.55","2,255.05","2,276.35","2,263.50","-","-12.85","-0.56","5,43,217","123.52","3,394.90","2,207.80","-0.95","-23.29"
40
+ "KOTAKBANK","1,891.00","1,918.50","1,873.05","1,894.85","1,883.40","-","-11.45","-0.60","40,25,366","763.23","1,942.00","1,543.85","7.84","6.66"
41
+ "HCLTECH","1,800.00","1,829.40","1,791.10","1,807.00","1,796.00","-","-11.00","-0.61","31,71,259","571.83","2,012.20","1,235.00","-5.49","15.65"
42
+ "SHREECEM","25,926.80","26,393.40","25,646.80","25,926.80","25,748.00","-","-178.80","-0.69","31,358","81.60","30,737.75","23,500.00","-3.46","-7.75"
43
+ "ICICIPRULI","595.00","600.85","586.90","594.70","590.00","-","-4.70","-0.79","15,67,073","92.86","796.80","480.00","-10.74","21.43"
44
+ "MARUTI","11,930.00","12,093.00","11,914.10","12,045.75","11,949.35","-","-96.40","-0.80","3,10,343","372.11","13,680.00","9,755.00","11.47","21.12"
45
+ "VEDL","446.00","453.50","440.45","446.50","442.75","-","-3.75","-0.84","47,58,741","212.41","526.95","249.50","-4.35","67.68"
46
+ "SUNPHARMA","1,829.00","1,843.10","1,808.20","1,833.60","1,818.00","-","-15.60","-0.85","12,77,935","232.87","1,960.35","1,348.50","0.18","33.17"
47
+ "IOC","130.99","132.75","127.90","129.83","128.61","-","-1.22","-0.94","1,26,30,632","164.11","196.80","121.16","-7.24","-10.74"
48
+ "BAJAJFINSV","1,751.00","1,754.90","1,725.00","1,746.15","1,729.55","-","-16.60","-0.95","7,47,930","129.90","2,029.90","1,419.05","10.49","6.05"
49
+ "ADANIPORTS","1,104.15","1,115.00","1,088.25","1,104.00","1,093.50","-","-10.50","-0.95","24,00,140","264.20","1,621.40","995.65","-7.45","-4.55"
50
+ "SHRIRAMFIN","531.95","541.80","509.15","529.80","524.65","-","-5.15","-0.97","76,02,501","403.72","730.45","438.60","-81.70","-77.14"
51
+ "SBILIFE","1,451.30","1,455.60","1,418.15","1,449.85","1,435.00","-","-14.85","-1.02","15,04,123","216.68","1,936.00","1,307.70","3.85","4.31"
52
+ "IRCTC","799.20","802.50","784.30","795.20","787.00","-","-8.20","-1.03","13,03,909","103.57","1,138.90","743.75","-0.16","-18.84"
53
+ "ICICIGI","1,839.00","1,841.85","1,805.00","1,834.10","1,815.00","-","-19.10","-1.04","4,29,489","78.17","2,301.90","1,468.80","-2.85","22.50"
54
+ "ULTRACEMCO","11,251.00","11,609.70","11,222.40","11,420.90","11,300.00","-","-120.90","-1.06","5,45,939","621.45","12,145.35","9,250.00","-0.92","13.21"
55
+ "HDFCBANK","1,660.00","1,670.30","1,644.50","1,664.90","1,645.00","-","-19.90","-1.20","1,21,18,100","2,009.99","1,880.00","1,363.55","-8.25","14.98"
56
+ "ADANIPOWER","522.55","528.80","509.00","521.80","515.50","-","-6.30","-1.21","49,43,171","255.83","895.85","432.00","3.80","-"
57
+ "HEROMOTOCO","4,105.05","4,125.00","4,041.10","4,100.35","4,049.90","-","-50.45","-1.23","2,16,273","88.17","6,246.25","3,997.50","-4.86","-8.79"
58
+ "LT","3,514.50","3,521.10","3,446.05","3,503.25","3,459.80","-","-43.45","-1.24","12,06,454","419.94","3,963.50","3,175.05","-4.99","-3.76"
59
+ "JINDALSTEL","899.00","908.00","881.00","893.00","881.55","-","-11.45","-1.28","20,53,984","183.22","1,097.00","687.80","-6.35","23.24"
60
+ "GODREJCP","1,145.95","1,147.95","1,125.40","1,145.20","1,130.00","-","-15.20","-1.33","3,77,449","42.76","1,541.85","1,055.05","4.88","-2.33"
61
+ "BEL","273.95","276.70","268.80","273.95","270.30","-","-3.65","-1.33","1,01,64,897","277.00","340.50","171.75","-7.63","42.41"
62
+ "MOTHERSON","145.16","146.01","142.38","144.97","143.03","-","-1.94","-1.34","70,07,575","100.73","216.99","104.20","-9.05","23.91"
63
+ "JSWENERGY","555.00","564.00","538.10","552.10","544.55","-","-7.55","-1.37","21,08,004","115.85","804.90","452.20","-16.03","11.59"
64
+ "TVSMOTOR","2,301.00","2,307.30","2,258.00","2,300.10","2,268.45","-","-31.65","-1.38","5,76,285","130.89","2,958.00","1,873.00","-6.45","16.98"
65
+ "NAUKRI","7,525.50","7,564.00","7,430.15","7,535.50","7,430.35","-","-105.15","-1.40","1,37,875","103.19","9,128.90","4,862.20","-14.14","49.46"
66
+ "CANBK","98.15","98.68","96.41","98.15","96.70","-","-1.45","-1.48","1,26,10,574","122.88","128.90","87.79","-3.78","-79.21"
67
+ "DIVISLAB","5,850.00","5,900.40","5,707.30","5,850.95","5,764.00","-","-86.95","-1.49","3,87,486","224.39","6,285.45","3,350.00","-0.34","61.02"
68
+ "RELIANCE","1,266.00","1,273.00","1,243.50","1,263.65","1,244.45","-","-19.20","-1.52","1,42,35,970","1,782.71","1,608.80","1,201.50","1.93","-53.95"
69
+ "CHOLAFIN","1,247.50","1,252.35","1,215.65","1,246.05","1,224.50","-","-21.55","-1.73","11,18,698","137.79","1,652.00","1,011.20","3.17","-1.74"
70
+ "ONGC","262.99","265.64","255.75","263.05","258.25","-","-4.80","-1.82","63,06,281","163.53","345.00","223.00","7.35","9.60"
71
+ "BANKBARODA","228.36","230.01","224.60","229.16","224.97","-","-4.19","-1.83","74,98,269","170.44","299.70","216.35","-8.06","-0.81"
72
+ "LICI","839.50","839.90","820.00","837.25","821.60","-","-15.65","-1.87","5,29,524","43.84","1,222.00","806.85","-7.79","-9.10"
73
+ "HAL","3,940.00","3,974.05","3,836.25","3,922.55","3,848.45","-","-74.10","-1.89","11,49,113","446.69","5,674.75","2,820.00","-8.69","32.58"
74
+ "BOSCHLTD","30,900.00","31,113.50","30,240.00","30,990.50","30,395.00","-","-595.50","-1.92","15,495","47.39","39,088.80","22,315.20","-11.77","33.26"
75
+ "PIDILITIND","2,909.65","2,943.00","2,841.00","2,909.65","2,853.50","-","-56.15","-1.93","3,00,150","86.44","3,415.00","2,503.25","-3.88","10.21"
76
+ "NHPC","78.40","78.81","76.75","78.46","76.93","-","-1.53","-1.95","83,28,267","64.60","118.40","72.15","-6.30","-7.71"
77
+ "ADANIGREEN","1,037.25","1,065.00","1,006.00","1,030.25","1,009.00","-","-21.25","-2.06","49,78,974","512.93","2,174.10","870.25","-1.84","-39.21"
78
+ "UNITDSPR","1,536.00","1,549.00","1,461.35","1,500.65","1,469.55","-","-31.10","-2.07","19,68,647","292.56","1,700.00","1,054.70","-6.07","-"
79
+ "PNB","99.25","99.79","96.51","99.43","97.34","-","-2.09","-2.10","2,68,93,329","263.66","142.90","92.40","-3.96","-6.58"
80
+ "INDUSINDBK","970.85","973.00","948.25","970.95","950.00","-","-20.95","-2.16","29,38,649","281.84","1,576.35","926.45","1.66","-37.12"
81
+ GAIL,"178.81","180.09","175.34","179.66","175.71","-","-3.95","-2.20","62,35,286","110.03","246.30","156.20","-11.22","6.31"
82
+ "UNIONBANK","109.92","110.00","106.50","109.70","107.22","-","-2.48","-2.26","52,16,313","56.30","172.50","100.81","-9.19","-23.55"
83
+ ABB,"6,360.00","6,379.90","6,152.30","6,330.25","6,174.00","-","-156.25","-2.47","1,45,838","90.89","9,149.95","4,340.30","-10.17","30.38"
84
+ "CIPLA","1,445.25","1,451.00","1,408.00","1,451.15","1,415.00","-","-36.15","-2.49","16,15,412","230.94","1,702.05","1,312.00","-4.36","3.05"
85
+ "TATAMOTORS","750.05","754.15","732.20","752.50","733.40","-","-19.10","-2.54","95,13,166","704.64","1,179.00","717.70","-0.27","-9.58"
86
+ "APOLLOHOSP","6,915.25","6,915.25","6,728.45","6,920.85","6,742.00","-","-178.85","-2.58","3,17,194","215.44","7,545.35","5,693.20","-6.84","9.34"
87
+ "ATGL","660.00","663.70","638.00","658.25","641.05","-","-17.20","-2.61","4,69,301","30.41","1,190.00","545.75","-4.39","-36.04"
88
+ "ADANIENSOL","814.00","816.00","781.00","808.80","787.00","-","-21.80","-2.70","27,73,445","219.77","1,348.00","588.00","2.48","-25.56"
89
+ "BHEL","207.00","208.66","199.50","206.49","200.80","-","-5.69","-2.76","93,44,993","189.91","335.35","191.66","-16.36","-8.96"
90
+ "ZOMATO","221.00","221.00","214.60","221.95","215.45","-","-6.50","-2.93","4,39,01,547","956.09","304.70","129.80","-21.56","58.35"
91
+ "BPCL","274.00","279.40","263.00","271.25","263.25","-","-8.00","-2.95","1,84,80,516","500.05","376.00","231.65","-9.66","-44.39"
92
+ "ADANIENT","2,387.75","2,406.00","2,299.40","2,385.00","2,314.05","-","-70.95","-2.97","13,88,583","326.32","3,743.90","2,025.00","-2.42","-19.99"
93
+ "ZYDUSLIFE","989.05","989.05","955.00","989.15","959.30","-","-29.85","-3.02","7,80,860","75.29","1,324.30","726.45","-0.75","30.02"
94
+ "M&M","2,875.00","2,896.00","2,790.00","2,886.45","2,799.00","-","-87.45","-3.03","26,65,366","758.32","3,237.05","1,575.00","-4.35","71.29"
95
+ "SIEMENS","6,050.00","6,067.00","5,834.20","6,067.85","5,880.00","-","-187.85","-3.10","2,47,172","146.60","8,129.90","4,029.45","-11.65","39.81"
96
+ "DLF","718.00","720.00","691.10","715.05","692.80","-","-22.25","-3.11","34,32,119","242.09","967.60","687.05","-17.40","-8.36"
97
+ "PFC","421.30","423.70","407.10","421.25","407.95","-","-13.30","-3.16","55,21,223","227.74","580.00","351.70","-9.49","-2.53"
98
+ "RECLTD","463.75","466.25","445.00","463.75","446.65","-","-17.10","-3.69","67,38,912","304.88","654.00","408.30","-12.05","-5.08"
99
+ "HAVELLS","1,595.30","1,605.95","1,517.55","1,595.30","1,533.45","-","-61.85","-3.88","9,99,025","154.22","2,106.00","1,280.00","-9.02","18.05"
100
+ "TRENT","5,720.00","5,755.05","5,466.45","5,733.60","5,499.00","-","-234.60","-4.09","11,19,070","627.17","8,345.00","2,955.00","-21.65","69.89"
101
+ "JIOFIN","256.00","257.35","243.55","255.85","243.90","-","-11.95","-4.67","3,83,79,153","951.96","394.70","237.10","-19.77","1.92"
102
+ "DRREDDY","1,229.95","1,252.65","1,203.50","1,289.40","1,226.20","-","-63.20","-4.90","70,82,467","868.02","1,421.49","1,120.00","-9.36","-79.09"
data/ind_nifty200list.csv ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Company Name,Industry,Symbol,Series,ISIN Code
2
+ ABB India Ltd.,Capital Goods,ABB,EQ,INE117A01022
3
+ ACC Ltd.,Construction Materials,ACC,EQ,INE012A01025
4
+ APL Apollo Tubes Ltd.,Capital Goods,APLAPOLLO,EQ,INE702C01027
5
+ AU Small Finance Bank Ltd.,Financial Services,AUBANK,EQ,INE949L01017
6
+ Adani Energy Solutions Ltd.,Power,ADANIENSOL,EQ,INE931S01010
7
+ Adani Enterprises Ltd.,Metals & Mining,ADANIENT,EQ,INE423A01024
8
+ Adani Green Energy Ltd.,Power,ADANIGREEN,EQ,INE364U01010
9
+ Adani Ports and Special Economic Zone Ltd.,Services,ADANIPORTS,EQ,INE742F01042
10
+ Adani Power Ltd.,Power,ADANIPOWER,EQ,INE814H01011
11
+ Adani Total Gas Ltd.,Oil Gas & Consumable Fuels,ATGL,EQ,INE399L01023
12
+ Aditya Birla Capital Ltd.,Financial Services,ABCAPITAL,EQ,INE674K01013
13
+ Aditya Birla Fashion and Retail Ltd.,Consumer Services,ABFRL,EQ,INE647O01011
14
+ Alkem Laboratories Ltd.,Healthcare,ALKEM,EQ,INE540L01014
15
+ Ambuja Cements Ltd.,Construction Materials,AMBUJACEM,EQ,INE079A01024
16
+ Apollo Hospitals Enterprise Ltd.,Healthcare,APOLLOHOSP,EQ,INE437A01024
17
+ Apollo Tyres Ltd.,Automobile and Auto Components,APOLLOTYRE,EQ,INE438A01022
18
+ Ashok Leyland Ltd.,Capital Goods,ASHOKLEY,EQ,INE208A01029
19
+ Asian Paints Ltd.,Consumer Durables,ASIANPAINT,EQ,INE021A01026
20
+ Astral Ltd.,Capital Goods,ASTRAL,EQ,INE006I01046
21
+ Aurobindo Pharma Ltd.,Healthcare,AUROPHARMA,EQ,INE406A01037
22
+ Avenue Supermarts Ltd.,Consumer Services,DMART,EQ,INE192R01011
23
+ Axis Bank Ltd.,Financial Services,AXISBANK,EQ,INE238A01034
24
+ BSE Ltd.,Financial Services,BSE,EQ,INE118H01025
25
+ Bajaj Auto Ltd.,Automobile and Auto Components,BAJAJ-AUTO,EQ,INE917I01010
26
+ Bajaj Finance Ltd.,Financial Services,BAJFINANCE,EQ,INE296A01024
27
+ Bajaj Finserv Ltd.,Financial Services,BAJAJFINSV,EQ,INE918I01026
28
+ Bajaj Holdings & Investment Ltd.,Financial Services,BAJAJHLDNG,EQ,INE118A01012
29
+ Balkrishna Industries Ltd.,Automobile and Auto Components,BALKRISIND,EQ,INE787D01026
30
+ Bandhan Bank Ltd.,Financial Services,BANDHANBNK,EQ,INE545U01014
31
+ Bank of Baroda,Financial Services,BANKBARODA,EQ,INE028A01039
32
+ Bank of India,Financial Services,BANKINDIA,EQ,INE084A01016
33
+ Bank of Maharashtra,Financial Services,MAHABANK,EQ,INE457A01014
34
+ Bharat Dynamics Ltd.,Capital Goods,BDL,EQ,INE171Z01026
35
+ Bharat Electronics Ltd.,Capital Goods,BEL,EQ,INE263A01024
36
+ Bharat Forge Ltd.,Automobile and Auto Components,BHARATFORG,EQ,INE465A01025
37
+ Bharat Heavy Electricals Ltd.,Capital Goods,BHEL,EQ,INE257A01026
38
+ Bharat Petroleum Corporation Ltd.,Oil Gas & Consumable Fuels,BPCL,EQ,INE029A01011
39
+ Bharti Airtel Ltd.,Telecommunication,BHARTIARTL,EQ,INE397D01024
40
+ Bharti Hexacom Ltd.,Telecommunication,BHARTIHEXA,EQ,INE343G01021
41
+ Biocon Ltd.,Healthcare,BIOCON,EQ,INE376G01013
42
+ Bosch Ltd.,Automobile and Auto Components,BOSCHLTD,EQ,INE323A01026
43
+ Britannia Industries Ltd.,Fast Moving Consumer Goods,BRITANNIA,EQ,INE216A01030
44
+ CG Power and Industrial Solutions Ltd.,Capital Goods,CGPOWER,EQ,INE067A01029
45
+ Canara Bank,Financial Services,CANBK,EQ,INE476A01022
46
+ Cholamandalam Investment and Finance Company Ltd.,Financial Services,CHOLAFIN,EQ,INE121A01024
47
+ Cipla Ltd.,Healthcare,CIPLA,EQ,INE059A01026
48
+ Coal India Ltd.,Oil Gas & Consumable Fuels,COALINDIA,EQ,INE522F01014
49
+ Cochin Shipyard Ltd.,Capital Goods,COCHINSHIP,EQ,INE704P01025
50
+ Coforge Ltd.,Information Technology,COFORGE,EQ,INE591G01017
51
+ Colgate Palmolive (India) Ltd.,Fast Moving Consumer Goods,COLPAL,EQ,INE259A01022
52
+ Container Corporation of India Ltd.,Services,CONCOR,EQ,INE111A01025
53
+ Cummins India Ltd.,Capital Goods,CUMMINSIND,EQ,INE298A01020
54
+ DLF Ltd.,Realty,DLF,EQ,INE271C01023
55
+ Dabur India Ltd.,Fast Moving Consumer Goods,DABUR,EQ,INE016A01026
56
+ Delhivery Ltd.,Services,DELHIVERY,EQ,INE148O01028
57
+ Divi's Laboratories Ltd.,Healthcare,DIVISLAB,EQ,INE361B01024
58
+ Dixon Technologies (India) Ltd.,Consumer Durables,DIXON,EQ,INE935N01020
59
+ Dr. Reddy's Laboratories Ltd.,Healthcare,DRREDDY,EQ,INE089A01031
60
+ Dummy ITC Ltd.,Consumer Services,DUMMYITC,EQ,DUM154A01025
61
+ Eicher Motors Ltd.,Automobile and Auto Components,EICHERMOT,EQ,INE066A01021
62
+ Escorts Kubota Ltd.,Capital Goods,ESCORTS,EQ,INE042A01014
63
+ Exide Industries Ltd.,Automobile and Auto Components,EXIDEIND,EQ,INE302A01020
64
+ FSN E-Commerce Ventures Ltd.,Consumer Services,NYKAA,EQ,INE388Y01029
65
+ Federal Bank Ltd.,Financial Services,FEDERALBNK,EQ,INE171A01029
66
+ Fertilisers and Chemicals Travancore Ltd.,Chemicals,FACT,EQ,INE188A01015
67
+ GAIL (India) Ltd.,Oil Gas & Consumable Fuels,GAIL,EQ,INE129A01019
68
+ GMR Airports Ltd.,Services,GMRAIRPORT,EQ,INE776C01039
69
+ Godrej Consumer Products Ltd.,Fast Moving Consumer Goods,GODREJCP,EQ,INE102D01028
70
+ Godrej Properties Ltd.,Realty,GODREJPROP,EQ,INE484J01027
71
+ Grasim Industries Ltd.,Construction Materials,GRASIM,EQ,INE047A01021
72
+ HCL Technologies Ltd.,Information Technology,HCLTECH,EQ,INE860A01027
73
+ HDFC Asset Management Company Ltd.,Financial Services,HDFCAMC,EQ,INE127D01025
74
+ HDFC Bank Ltd.,Financial Services,HDFCBANK,EQ,INE040A01034
75
+ HDFC Life Insurance Company Ltd.,Financial Services,HDFCLIFE,EQ,INE795G01014
76
+ Havells India Ltd.,Consumer Durables,HAVELLS,EQ,INE176B01034
77
+ Hero MotoCorp Ltd.,Automobile and Auto Components,HEROMOTOCO,EQ,INE158A01026
78
+ Hindalco Industries Ltd.,Metals & Mining,HINDALCO,EQ,INE038A01020
79
+ Hindustan Aeronautics Ltd.,Capital Goods,HAL,EQ,INE066F01020
80
+ Hindustan Petroleum Corporation Ltd.,Oil Gas & Consumable Fuels,HINDPETRO,EQ,INE094A01015
81
+ Hindustan Unilever Ltd.,Fast Moving Consumer Goods,HINDUNILVR,EQ,INE030A01027
82
+ Hindustan Zinc Ltd.,Metals & Mining,HINDZINC,EQ,INE267A01025
83
+ Housing & Urban Development Corporation Ltd.,Financial Services,HUDCO,EQ,INE031A01017
84
+ ICICI Bank Ltd.,Financial Services,ICICIBANK,EQ,INE090A01021
85
+ ICICI Lombard General Insurance Company Ltd.,Financial Services,ICICIGI,EQ,INE765G01017
86
+ ICICI Prudential Life Insurance Company Ltd.,Financial Services,ICICIPRULI,EQ,INE726G01019
87
+ IDBI Bank Ltd.,Financial Services,IDBI,EQ,INE008A01015
88
+ IDFC First Bank Ltd.,Financial Services,IDFCFIRSTB,EQ,INE092T01019
89
+ IRB Infrastructure Developers Ltd.,Construction,IRB,EQ,INE821I01022
90
+ ITC Ltd.,Fast Moving Consumer Goods,ITC,EQ,INE154A01025
91
+ Indian Bank,Financial Services,INDIANB,EQ,INE562A01011
92
+ Indian Hotels Co. Ltd.,Consumer Services,INDHOTEL,EQ,INE053A01029
93
+ Indian Oil Corporation Ltd.,Oil Gas & Consumable Fuels,IOC,EQ,INE242A01010
94
+ Indian Overseas Bank,Financial Services,IOB,EQ,INE565A01014
95
+ Indian Railway Catering And Tourism Corporation Ltd.,Consumer Services,IRCTC,EQ,INE335Y01020
96
+ Indian Railway Finance Corporation Ltd.,Financial Services,IRFC,EQ,INE053F01010
97
+ Indian Renewable Energy Development Agency Ltd.,Financial Services,IREDA,EQ,INE202E01016
98
+ Indraprastha Gas Ltd.,Oil Gas & Consumable Fuels,IGL,EQ,INE203G01027
99
+ Indus Towers Ltd.,Telecommunication,INDUSTOWER,EQ,INE121J01017
100
+ IndusInd Bank Ltd.,Financial Services,INDUSINDBK,EQ,INE095A01012
101
+ Info Edge (India) Ltd.,Consumer Services,NAUKRI,EQ,INE663F01024
102
+ Infosys Ltd.,Information Technology,INFY,EQ,INE009A01021
103
+ InterGlobe Aviation Ltd.,Services,INDIGO,EQ,INE646L01027
104
+ JSW Energy Ltd.,Power,JSWENERGY,EQ,INE121E01018
105
+ JSW Infrastructure Ltd.,Services,JSWINFRA,EQ,INE880J01026
106
+ JSW Steel Ltd.,Metals & Mining,JSWSTEEL,EQ,INE019A01038
107
+ Jindal Steel & Power Ltd.,Metals & Mining,JINDALSTEL,EQ,INE749A01030
108
+ Jio Financial Services Ltd.,Financial Services,JIOFIN,EQ,INE758E01017
109
+ Jubilant Foodworks Ltd.,Consumer Services,JUBLFOOD,EQ,INE797F01020
110
+ KPIT Technologies Ltd.,Information Technology,KPITTECH,EQ,INE04I401011
111
+ Kalyan Jewellers India Ltd.,Consumer Durables,KALYANKJIL,EQ,INE303R01014
112
+ Kotak Mahindra Bank Ltd.,Financial Services,KOTAKBANK,EQ,INE237A01028
113
+ L&T Finance Ltd.,Financial Services,LTF,EQ,INE498L01015
114
+ LIC Housing Finance Ltd.,Financial Services,LICHSGFIN,EQ,INE115A01026
115
+ LTIMindtree Ltd.,Information Technology,LTIM,EQ,INE214T01019
116
+ Larsen & Toubro Ltd.,Construction,LT,EQ,INE018A01030
117
+ Life Insurance Corporation of India,Financial Services,LICI,EQ,INE0J1Y01017
118
+ Lupin Ltd.,Healthcare,LUPIN,EQ,INE326A01037
119
+ MRF Ltd.,Automobile and Auto Components,MRF,EQ,INE883A01011
120
+ Macrotech Developers Ltd.,Realty,LODHA,EQ,INE670K01029
121
+ Mahindra & Mahindra Financial Services Ltd.,Financial Services,M&MFIN,EQ,INE774D01024
122
+ Mahindra & Mahindra Ltd.,Automobile and Auto Components,M&M,EQ,INE101A01026
123
+ Mangalore Refinery & Petrochemicals Ltd.,Oil Gas & Consumable Fuels,MRPL,EQ,INE103A01014
124
+ Mankind Pharma Ltd.,Healthcare,MANKIND,EQ,INE634S01028
125
+ Marico Ltd.,Fast Moving Consumer Goods,MARICO,EQ,INE196A01026
126
+ Maruti Suzuki India Ltd.,Automobile and Auto Components,MARUTI,EQ,INE585B01010
127
+ Max Financial Services Ltd.,Financial Services,MFSL,EQ,INE180A01020
128
+ Max Healthcare Institute Ltd.,Healthcare,MAXHEALTH,EQ,INE027H01010
129
+ Mazagoan Dock Shipbuilders Ltd.,Capital Goods,MAZDOCK,EQ,INE249Z01020
130
+ MphasiS Ltd.,Information Technology,MPHASIS,EQ,INE356A01018
131
+ Muthoot Finance Ltd.,Financial Services,MUTHOOTFIN,EQ,INE414G01012
132
+ NHPC Ltd.,Power,NHPC,EQ,INE848E01016
133
+ NLC India Ltd.,Power,NLCINDIA,EQ,INE589A01014
134
+ NMDC Ltd.,Metals & Mining,NMDC,EQ,INE584A01023
135
+ NTPC Ltd.,Power,NTPC,EQ,INE733E01010
136
+ Nestle India Ltd.,Fast Moving Consumer Goods,NESTLEIND,EQ,INE239A01024
137
+ Oberoi Realty Ltd.,Realty,OBEROIRLTY,EQ,INE093I01010
138
+ Oil & Natural Gas Corporation Ltd.,Oil Gas & Consumable Fuels,ONGC,EQ,INE213A01029
139
+ Oil India Ltd.,Oil Gas & Consumable Fuels,OIL,EQ,INE274J01014
140
+ One 97 Communications Ltd.,Financial Services,PAYTM,EQ,INE982J01020
141
+ Oracle Financial Services Software Ltd.,Information Technology,OFSS,EQ,INE881D01027
142
+ PB Fintech Ltd.,Financial Services,POLICYBZR,EQ,INE417T01026
143
+ PI Industries Ltd.,Chemicals,PIIND,EQ,INE603J01030
144
+ Page Industries Ltd.,Textiles,PAGEIND,EQ,INE761H01022
145
+ Patanjali Foods Ltd.,Fast Moving Consumer Goods,PATANJALI,EQ,INE619A01035
146
+ Persistent Systems Ltd.,Information Technology,PERSISTENT,EQ,INE262H01021
147
+ Petronet LNG Ltd.,Oil Gas & Consumable Fuels,PETRONET,EQ,INE347G01014
148
+ Phoenix Mills Ltd.,Realty,PHOENIXLTD,EQ,INE211B01039
149
+ Pidilite Industries Ltd.,Chemicals,PIDILITIND,EQ,INE318A01026
150
+ Polycab India Ltd.,Capital Goods,POLYCAB,EQ,INE455K01017
151
+ Poonawalla Fincorp Ltd.,Financial Services,POONAWALLA,EQ,INE511C01022
152
+ Power Finance Corporation Ltd.,Financial Services,PFC,EQ,INE134E01011
153
+ Power Grid Corporation of India Ltd.,Power,POWERGRID,EQ,INE752E01010
154
+ Prestige Estates Projects Ltd.,Realty,PRESTIGE,EQ,INE811K01011
155
+ Punjab National Bank,Financial Services,PNB,EQ,INE160A01022
156
+ REC Ltd.,Financial Services,RECLTD,EQ,INE020B01018
157
+ Rail Vikas Nigam Ltd.,Construction,RVNL,EQ,INE415G01027
158
+ Reliance Industries Ltd.,Oil Gas & Consumable Fuels,RELIANCE,EQ,INE002A01018
159
+ SBI Cards and Payment Services Ltd.,Financial Services,SBICARD,EQ,INE018E01016
160
+ SBI Life Insurance Company Ltd.,Financial Services,SBILIFE,EQ,INE123W01016
161
+ SJVN Ltd.,Power,SJVN,EQ,INE002L01015
162
+ SRF Ltd.,Chemicals,SRF,EQ,INE647A01010
163
+ Samvardhana Motherson International Ltd.,Automobile and Auto Components,MOTHERSON,EQ,INE775A01035
164
+ Shree Cement Ltd.,Construction Materials,SHREECEM,EQ,INE070A01015
165
+ Shriram Finance Ltd.,Financial Services,SHRIRAMFIN,EQ,INE721A01047
166
+ Siemens Ltd.,Capital Goods,SIEMENS,EQ,INE003A01024
167
+ Solar Industries India Ltd.,Chemicals,SOLARINDS,EQ,INE343H01029
168
+ Sona BLW Precision Forgings Ltd.,Automobile and Auto Components,SONACOMS,EQ,INE073K01018
169
+ State Bank of India,Financial Services,SBIN,EQ,INE062A01020
170
+ Steel Authority of India Ltd.,Metals & Mining,SAIL,EQ,INE114A01011
171
+ Sun Pharmaceutical Industries Ltd.,Healthcare,SUNPHARMA,EQ,INE044A01036
172
+ Sundaram Finance Ltd.,Financial Services,SUNDARMFIN,EQ,INE660A01013
173
+ Supreme Industries Ltd.,Capital Goods,SUPREMEIND,EQ,INE195A01028
174
+ Suzlon Energy Ltd.,Capital Goods,SUZLON,EQ,INE040H01021
175
+ TVS Motor Company Ltd.,Automobile and Auto Components,TVSMOTOR,EQ,INE494B01023
176
+ Tata Chemicals Ltd.,Chemicals,TATACHEM,EQ,INE092A01019
177
+ Tata Communications Ltd.,Telecommunication,TATACOMM,EQ,INE151A01013
178
+ Tata Consultancy Services Ltd.,Information Technology,TCS,EQ,INE467B01029
179
+ Tata Consumer Products Ltd.,Fast Moving Consumer Goods,TATACONSUM,EQ,INE192A01025
180
+ Tata Elxsi Ltd.,Information Technology,TATAELXSI,EQ,INE670A01012
181
+ Tata Motors Ltd.,Automobile and Auto Components,TATAMOTORS,EQ,INE155A01022
182
+ Tata Power Co. Ltd.,Power,TATAPOWER,EQ,INE245A01021
183
+ Tata Steel Ltd.,Metals & Mining,TATASTEEL,EQ,INE081A01020
184
+ Tata Technologies Ltd.,Information Technology,TATATECH,EQ,INE142M01025
185
+ Tech Mahindra Ltd.,Information Technology,TECHM,EQ,INE669C01036
186
+ Titan Company Ltd.,Consumer Durables,TITAN,EQ,INE280A01028
187
+ Torrent Pharmaceuticals Ltd.,Healthcare,TORNTPHARM,EQ,INE685A01028
188
+ Torrent Power Ltd.,Power,TORNTPOWER,EQ,INE813H01021
189
+ Trent Ltd.,Consumer Services,TRENT,EQ,INE849A01020
190
+ Tube Investments of India Ltd.,Automobile and Auto Components,TIINDIA,EQ,INE974X01010
191
+ UPL Ltd.,Chemicals,UPL,EQ,INE628A01036
192
+ UltraTech Cement Ltd.,Construction Materials,ULTRACEMCO,EQ,INE481G01011
193
+ Union Bank of India,Financial Services,UNIONBANK,EQ,INE692A01016
194
+ United Spirits Ltd.,Fast Moving Consumer Goods,UNITDSPR,EQ,INE854D01024
195
+ Varun Beverages Ltd.,Fast Moving Consumer Goods,VBL,EQ,INE200M01039
196
+ Vedanta Ltd.,Metals & Mining,VEDL,EQ,INE205A01025
197
+ Vodafone Idea Ltd.,Telecommunication,IDEA,EQ,INE669E01016
198
+ Voltas Ltd.,Consumer Durables,VOLTAS,EQ,INE226A01021
199
+ Wipro Ltd.,Information Technology,WIPRO,EQ,INE075A01022
200
+ Yes Bank Ltd.,Financial Services,YESBANK,EQ,INE528G01035
201
+ Zomato Ltd.,Consumer Services,ZOMATO,EQ,INE758T01015
202
+ Zydus Lifesciences Ltd.,Healthcare,ZYDUSLIFE,EQ,INE010B01027
data/ind_niftynext50list.csv ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ "SYMBOL","OPEN","HIGH","LOW","PREV. CLOSE","LTP","INDICATIVE CLOSE","CHNG","%CHNG","VOLUME (shares)","VALUE (₹ Crores)","52W H","52W L","30 D %CHNG",365 D % CHNG 25-Jan-2024
2
+ NIFTY NEXT 50,"63,574.70","63,755.10","62,388.60","63,499.75","62,494.00","-","-1,005.75","-1.58","26,46,30,006","10,080.89","77,918.00","55,463.50","-9.24","15.11"
3
+ LODHA,"1,077.00","1,109.00","1,076.00","1,082.30","1,100.00","-","17.70","1.64","25,66,066","281.53","1,649.95","977.35","-21.63","4.12"
4
+ "BAJAJHLDNG","11,160.05","11,310.00","11,101.40","11,198.30","11,290.00","-","91.70","0.82","28,427","32.03","13,238.00","7,659.95","2.19","37.77"
5
+ "INDIGO","4,162.10","4,269.80","4,126.05","4,134.80","4,162.25","-","27.45","0.66","14,81,820","621.17","5,035.00","2,847.00",-9.77,"45.36"
6
+ "VBL","539.00","548.70","536.90","540.40","541.60","-","1.20","0.22","30,64,139","165.99","681.12","488.40","-13.65","-56.92"
7
+ "AMBUJACEM","551.90","561.90","547.00","548.80","550.00","-","1.20","0.22","38,59,868","214.68","706.95","453.05","1.60","-1.49"
8
+ "TATAPOWER","362.75","370.70","362.20","362.75","363.00","-","0.25","0.07","79,66,520","291.85","494.85","338.40","-9.01","-0.47"
9
+ "DABUR","524.65","527.00","518.60","524.60","522.35","-","-2.25","-0.43","10,31,251","53.89","672.00","489.20","2.29","-1.87"
10
+ "LTIM","6,023.60","6,047.95","5,961.60","6,002.05","5,975.00","-","-27.05","-0.45","2,19,285","131.77","6,767.95","4,513.55","4.76","9.16"
11
+ "TORNTPHARM","3,270.75","3,283.85","3,210.00","3,263.75","3,248.90","-","-14.85","-0.45","3,91,085","126.81","3,590.70","2,414.00","-4.44","31.33"
12
+ "DMART","3,598.00","3,608.50","3,535.00","3,598.35","3,581.35","-","-17.00","-0.47","2,88,983","103.33","5,484.85","3,399.00","3.48","-4.13"
13
+ "IRFC","141.60","143.18","139.00","141.37","140.68","-","-0.69","-0.49","1,58,43,304","222.88","229.00","116.65","-4.86","-19.08"
14
+ "SHREECEM","25,926.80","26,393.40","25,646.80","25,926.80","25,748.00","-","-178.80","-0.69","31,358","81.60","30,737.75","23,500.00","-3.46","-7.75"
15
+ "ICICIPRULI","595.00","600.85","586.90","594.70","590.00","-","-4.70","-0.79","15,67,073","92.86","796.80","480.00","-10.74","21.43"
16
+ "VEDL","446.00","453.50","440.45","446.50","442.75","-","-3.75","-0.84","47,58,741","212.41","526.95","249.50","-4.35","67.68"
17
+ "IOC","130.99","132.75","127.90","129.83","128.61","-","-1.22","-0.94","1,26,30,632","164.11","196.80","121.16","-7.24","-10.74"
18
+ "IRCTC","799.20","802.50","784.30","795.20","787.00","-","-8.20","-1.03","13,03,909","103.57","1,138.90","743.75","-0.16","-18.84"
19
+ "ICICIGI","1,839.00","1,841.85","1,805.00","1,834.10","1,815.00","-","-19.10","-1.04","4,29,489","78.17","2,301.90","1,468.80","-2.85","22.50"
20
+ "ADANIPOWER","522.55","528.80","509.00","521.80","515.50","-","-6.30","-1.21","49,43,171","255.83","895.85","432.00","3.80","-"
21
+ "JINDALSTEL","899.00","908.00","881.00","893.00","881.55","-","-11.45","-1.28","20,53,984","183.22","1,097.00","687.80","-6.35","23.24"
22
+ "GODREJCP","1,145.95","1,147.95","1,125.40","1,145.20","1,130.00","-","-15.20","-1.33","3,77,449","42.76","1,541.85","1,055.05","4.88","-2.33"
23
+ "MOTHERSON","145.16","146.01","142.38","144.97","143.03","-","-1.94","-1.34","70,07,575","100.73","216.99","104.20","-9.05","23.91"
24
+ "JSWENERGY","555.00","564.00","538.10","552.10","544.55","-","-7.55","-1.37","21,08,004","115.85","804.90","452.20","-16.03","11.59"
25
+ "TVSMOTOR","2,301.00","2,307.30","2,258.00","2,300.10","2,268.45","-","-31.65","-1.38","5,76,285","130.89","2,958.00","1,873.00","-6.45","16.98"
26
+ "NAUKRI","7,525.50","7,564.00","7,430.15","7,535.50","7,430.35","-","-105.15","-1.40","1,37,875","103.19","9,128.90","4,862.20","-14.14","49.46"
27
+ "CANBK","98.15","98.68","96.41","98.15","96.70","-","-1.45","-1.48","1,26,10,574","122.88","128.90","87.79","-3.78","-79.21"
28
+ "DIVISLAB","5,850.00","5,900.40","5,707.30","5,850.95","5,764.00","-","-86.95","-1.49","3,87,486","224.39","6,285.45","3,350.00","-0.34","61.02"
29
+ "CHOLAFIN","1,247.50","1,252.35","1,215.65","1,246.05","1,224.50","-","-21.55","-1.73","11,18,698","137.79","1,652.00","1,011.20","3.17","-1.74"
30
+ "BANKBARODA","228.36","230.01","224.60","229.16","224.97","-","-4.19","-1.83","74,98,269","170.44","299.70","216.35","-8.06","-0.81"
31
+ "LICI","839.50","839.90","820.00","837.25","821.60","-","-15.65","-1.87","5,29,524","43.84","1,222.00","806.85","-7.79","-9.10"
32
+ "HAL","3,940.00","3,974.05","3,836.25","3,922.55","3,848.45","-","-74.10","-1.89","11,49,113","446.69","5,674.75","2,820.00","-8.69","32.58"
33
+ "BOSCHLTD","30,900.00","31,113.50","30,240.00","30,990.50","30,395.00","-","-595.50","-1.92","15,495","47.39","39,088.80","22,315.20","-11.77","33.26"
34
+ "PIDILITIND","2,909.65","2,943.00","2,841.00","2,909.65","2,853.50","-","-56.15","-1.93","3,00,150","86.44","3,415.00","2,503.25","-3.88","10.21"
35
+ "NHPC","78.40","78.81","76.75","78.46","76.93","-","-1.53","-1.95","83,28,267","64.60","118.40","72.15","-6.30","-7.71"
36
+ "ADANIGREEN","1,037.25","1,065.00","1,006.00","1,030.25","1,009.00","-","-21.25","-2.06","49,78,974","512.93","2,174.10","870.25","-1.84","-39.21"
37
+ "UNITDSPR","1,536.00","1,549.00","1,461.35","1,500.65","1,469.55","-","-31.10","-2.07","19,68,647","292.56","1,700.00","1,054.70","-6.07","-"
38
+ "PNB","99.25","99.79","96.51","99.43","97.34","-","-2.09","-2.10","2,68,93,329","263.66","142.90","92.40","-3.96","-6.58"
39
+ "GAIL","178.81","180.09","175.34","179.66","175.71","-","-3.95","-2.20","62,35,286","110.03","246.30","156.20","-11.22","6.31"
40
+ "UNIONBANK","109.92","110.00","106.50","109.70","107.22","-","-2.48","-2.26","52,16,313","56.30","172.50","100.81","-9.19","-23.55"
41
+ "ABB","6,360.00","6,379.90","6,152.30","6,330.25","6,174.00","-","-156.25","-2.47","1,45,838","90.89","9,149.95","4,340.30","-10.17","30.38"
42
+ "ATGL","660.00","663.70","638.00","658.25","641.05","-","-17.20","-2.61","4,69,301","30.41","1,190.00","545.75","-4.39","-36.04"
43
+ "ADANIENSOL","814.00","816.00","781.00","808.80","787.00","-","-21.80","-2.70","27,73,445","219.77","1,348.00","588.00","2.48","-25.56"
44
+ "BHEL","207.00","208.66","199.50","206.49","200.80","-","-5.69","-2.76","93,44,993","189.91","335.35","191.66","-16.36","-8.96"
45
+ "ZOMATO","221.00","221.00","214.60","221.95","215.45","-","-6.50","-2.93","4,39,01,547","956.09","304.70","129.80","-21.56","58.35"
46
+ "ZYDUSLIFE","989.05","989.05","955.00","989.15","959.30","-","-29.85","-3.02","7,80,860","75.29","1,324.30","726.45","-0.75","30.02"
47
+ SIEMENS,"6,050.00","6,067.00","5,834.20","6,067.85","5,880.00","-","-187.85","-3.10","2,47,172","146.60","8,129.90","4,029.45","-11.65","39.81"
48
+ "DLF","718.00","720.00","691.10","715.05","692.80","-","-22.25","-3.11","34,32,119","242.09","967.60","687.05","-17.40","-8.36"
49
+ "PFC","421.30","423.70","407.10","421.25","407.95","-","-13.30","-3.16","55,21,223","227.74","580.00","351.70","-9.49","-2.53"
50
+ "RECLTD","463.75","466.25","445.00","463.75","446.65","-","-17.10","-3.69","67,38,912","304.88","654.00","408.30","-12.05","-5.08"
51
+ "HAVELLS","1,595.30","1,605.95","1,517.55","1,595.30","1,533.45","-","-61.85","-3.88","9,99,025","154.22","2,106.00","1,280.00","-9.02","18.05"
52
+ "JIOFIN","256.00","257.35","243.55","255.85","243.90","-","-11.95","-4.67","3,83,79,153","951.96","394.70","237.10","-19.77","1.92"
page/complete_backtest.py CHANGED
@@ -1,9 +1,10 @@
1
  import streamlit as st
2
  import pandas as pd
 
3
  import time
4
 
5
  from streamlit.components import v1 as components
6
- from src.utils import complete_test
7
 
8
  def complete_backtest():
9
  @st.cache_data
@@ -21,7 +22,7 @@ def complete_backtest():
21
  """
22
  )
23
 
24
- st.info("Strategy runs on most of the Nifty50 stocks", icon="ℹ️")
25
 
26
  period_list = ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max']
27
 
@@ -55,9 +56,9 @@ def complete_backtest():
55
  ema2 = st.number_input("Slow EMA Length", min_value=1, value=21,
56
  help = "Length of Slow moving Exponential Moving Average.")
57
  with c3:
58
- cross_close = st.checkbox("Close trade on EMA crossover", value=False)
59
  else:
60
- ema1, ema2, cross_close = None, None, None
61
 
62
  with st.expander("Advanced options"):
63
  c1, c2, c3 = st.columns([2, 2, 1])
@@ -75,29 +76,60 @@ def complete_backtest():
75
  # Button to run the analysis
76
  if st.button("Run"):
77
  start = time.time()
78
- st.session_state.results = complete_test(strategy, period, interval, multiprocess,
79
  swing_hl=swing_hl, ema1=ema1, ema2=ema2,
80
- cross_close=cross_close, cash=initial_cash,
81
  commission=commission/100)
82
  st.success(f"Analysis finished in {round(time.time()-start, 2)} seconds")
83
 
84
  if "results" in st.session_state:
85
  # st.write("⬇️ Select a row in index column to get detailed information of the respective stock run.")
86
  st.markdown(f"""
87
- ### :orange[Nifty50 stocks backtest result by using {strategy}]
88
- ⬇️ Select a row in index column to get detailed information of the respective stock run.
 
89
  """)
90
- cols = ['stock', 'Start', 'End', 'Return [%]', 'Equity Final [₹]', 'Buy & Hold Return [%]', '# Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]']
91
- df = st.dataframe(st.session_state.results, hide_index=True, column_order=cols, on_select="rerun", selection_mode="single-row")
92
- df.selection.rows = 1
93
- if df.selection.rows:
94
- row = df.selection.rows
95
- ticker = st.session_state.results['stock'].values[row]
96
- plot = st.session_state.results['plot'].values[row]
97
- color = "green" if st.session_state.results['Return [%]'].values[row][0] > 0 else "red"
98
- st.markdown(f"""
99
- ### :{color}[{ticker[0]} backtest plot] 📊
100
- """)
101
- components.html(plot[0], height=1067)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
  complete_backtest()
 
1
  import streamlit as st
2
  import pandas as pd
3
+ import numpy as np
4
  import time
5
 
6
  from streamlit.components import v1 as components
7
+ from src.utils import complete_test, categorize_df
8
 
9
  def complete_backtest():
10
  @st.cache_data
 
22
  """
23
  )
24
 
25
+ stock_list = st.selectbox("Select Stock list", ['Nifty 50', 'Nifty Next 50', 'Nifty 100', 'Nifty 200'], index=0)
26
 
27
  period_list = ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max']
28
 
 
56
  ema2 = st.number_input("Slow EMA Length", min_value=1, value=21,
57
  help = "Length of Slow moving Exponential Moving Average.")
58
  with c3:
59
+ close_on_crossover = st.checkbox("Close trade on EMA crossover", value=False)
60
  else:
61
+ ema1, ema2, close_on_crossover = None, None, None
62
 
63
  with st.expander("Advanced options"):
64
  c1, c2, c3 = st.columns([2, 2, 1])
 
76
  # Button to run the analysis
77
  if st.button("Run"):
78
  start = time.time()
79
+ st.session_state.results = complete_test(stock_list, strategy, period, interval, multiprocess,
80
  swing_hl=swing_hl, ema1=ema1, ema2=ema2,
81
+ close_on_crossover=close_on_crossover, cash=initial_cash,
82
  commission=commission/100)
83
  st.success(f"Analysis finished in {round(time.time()-start, 2)} seconds")
84
 
85
  if "results" in st.session_state:
86
  # st.write("⬇️ Select a row in index column to get detailed information of the respective stock run.")
87
  st.markdown(f"""
88
+ ---
89
+ ### :orange[{stock_list} stocks backtest result by using {strategy} strategy]
90
+ ⬇️ Select rows in 'Select' column to get backtest plots of the selected stocks.
91
  """)
92
+ st.session_state.results['Select'] = False
93
+
94
+ cols = ['Select', 'Stock', 'Sector', 'Start', 'End', 'Return [%]', 'Equity Final [₹]', 'Buy & Hold Return [%]', '# Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]']
95
+ st.session_state.categorized_results = categorize_df(st.session_state.results, 'Sector', 'Return [%]')
96
+
97
+ st.session_state.categorized_results_dict = {}
98
+ st.session_state.selected_stocks = {}
99
+
100
+ for category, df in st.session_state.categorized_results.items():
101
+ mean = round(df['Return [%]'].mean(), 2)
102
+ color = "green" if mean > 0 else "red"
103
+ with st.expander(f"{str(category).upper()} :{color}[Average return rate: {mean} %]"):
104
+ st.session_state.categorized_results_dict[category] = (
105
+ st.data_editor(df,
106
+ column_config={
107
+ 'Select': st.column_config.CheckboxColumn(
108
+ 'Select',
109
+ default=False
110
+ )
111
+ },
112
+ hide_index=True, column_order=cols,
113
+ # on_select="rerun", selection_mode="single-row"
114
+ ))
115
+ st.session_state.selected_stocks[category] = (
116
+ np.where(st.session_state.categorized_results_dict[category]['Select']))[0]
117
+
118
+ for selected_rows in st.session_state.selected_stocks.values():
119
+ if len(selected_rows) > 0:
120
+ st.toast("Scroll to the bottom of page to view backtest plots.", icon=":material/vertical_align_bottom:")
121
+ st.markdown(f"""
122
+ ---
123
+ ### :orange[Selected stocks backtest plots by using {strategy} strategy]
124
+ """)
125
+ break
126
+
127
+ for selected_rows in st.session_state.selected_stocks.values():
128
+ for row in selected_rows:
129
+ ticker = st.session_state.results['Stock'].values[row]
130
+ plot = st.session_state.results['plot'].values[row]
131
+ color = "green" if st.session_state.results['Return [%]'].values[row] > 0 else "red"
132
+ with st.expander(f":{color}[{ticker} backtest plot] 📊"):
133
+ components.html(plot, height=900)
134
 
135
  complete_backtest()
page/single_backtest.py CHANGED
@@ -64,9 +64,9 @@ def algorithmic_trading_dashboard():
64
  ema2 = st.number_input("Slow EMA Length", min_value=1, value=21,
65
  help = "Length of Slow moving Exponential Moving Average.")
66
  with c3:
67
- cross_close = st.checkbox("Close trade on EMA crossover", value=False)
68
  else:
69
- ema1, ema2, cross_close = None, None, None
70
 
71
  with st.expander("Advanced options"):
72
  c1, c2 = st.columns(2)
@@ -98,7 +98,7 @@ def algorithmic_trading_dashboard():
98
  )
99
 
100
  backtest_results = run_strategy(ticker, strategy, period, interval,
101
- swing_hl=swing_hl, ema1=ema1, ema2=ema2, cross_close=cross_close,
102
  cash=initial_cash, commission=commission/100)
103
 
104
  color = "green" if backtest_results['Return [%]'].values[0] > 0 else "red"
@@ -108,7 +108,7 @@ def algorithmic_trading_dashboard():
108
  st.plotly_chart(signal_plot, width=1200)
109
 
110
  st.write(f'### :{color}[Backtest Results]')
111
- cols = ['stock', 'Start', 'End', 'Return [%]', 'Equity Final [₹]', 'Buy & Hold Return [%]', '# Trades',
112
  'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]']
113
  st.dataframe(backtest_results, hide_index=True, column_order=cols)
114
 
 
64
  ema2 = st.number_input("Slow EMA Length", min_value=1, value=21,
65
  help = "Length of Slow moving Exponential Moving Average.")
66
  with c3:
67
+ close_on_crossover = st.checkbox("Close trade on EMA crossover", value=False)
68
  else:
69
+ ema1, ema2, close_on_crossover = None, None, None
70
 
71
  with st.expander("Advanced options"):
72
  c1, c2 = st.columns(2)
 
98
  )
99
 
100
  backtest_results = run_strategy(ticker, strategy, period, interval,
101
+ swing_hl=swing_hl, ema1=ema1, ema2=ema2, close_on_crossover=close_on_crossover,
102
  cash=initial_cash, commission=commission/100)
103
 
104
  color = "green" if backtest_results['Return [%]'].values[0] > 0 else "red"
 
108
  st.plotly_chart(signal_plot, width=1200)
109
 
110
  st.write(f'### :{color}[Backtest Results]')
111
+ cols = ['Stock', 'Sector', 'Start', 'End', 'Return [%]', 'Equity Final [₹]', 'Buy & Hold Return [%]', '# Trades',
112
  'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]']
113
  st.dataframe(backtest_results, hide_index=True, column_order=cols)
114
 
requirements.txt CHANGED
@@ -2,6 +2,6 @@ backtesting==0.3.3
2
  numpy==2.2.0
3
  pandas==2.2.3
4
  bokeh==3.1.0
5
- yfinance==0.2.50
6
  plotly==5.24.1
7
  streamlit==1.41.1
 
2
  numpy==2.2.0
3
  pandas==2.2.3
4
  bokeh==3.1.0
5
+ yfinance==0.2.52
6
  plotly==5.24.1
7
  streamlit==1.41.1
src/utils.py CHANGED
@@ -28,7 +28,7 @@ def smc_backtest(data, filename, **kwargs):
28
  @start_end_log
29
  def smc_ema_backtest(data, filename, **kwargs):
30
  bt = Backtest(data, SMC_ema, cash=kwargs['cash'], commission=kwargs['commission'])
31
- results = bt.run(swing_window=kwargs['swing_hl'], ema1=kwargs['ema1'], ema2=kwargs['ema2'], close_on_crossover=kwargs['cross_close'])
32
  bt.plot(filename=filename, open_browser=False)
33
  return results
34
 
@@ -41,6 +41,8 @@ def smc_structure_backtest(data, filename, **kwargs):
41
 
42
  @start_end_log
43
  def run_strategy(ticker_symbol, strategy, period, interval, **kwargs):
 
 
44
  logger.info(f'Running {strategy} for {ticker_symbol}')
45
  # Fetching ohlc of random ticker_symbol.
46
  retries = 3
@@ -77,11 +79,13 @@ def run_strategy(ticker_symbol, strategy, period, interval, **kwargs):
77
  # Converting pd.Series to pd.Dataframe
78
  backtest_results = backtest_results.to_frame().transpose()
79
 
80
- backtest_results['stock'] = ticker_symbol
81
  backtest_results['plot'] = plot
 
 
82
 
83
  # Reordering columns.
84
- cols = ['stock', 'Start', 'End', 'Return [%]', 'Equity Final [$]', 'Buy & Hold Return [%]', '# Trades',
85
  'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'plot']
86
  backtest_results = backtest_results[cols]
87
 
@@ -90,18 +94,21 @@ def run_strategy(ticker_symbol, strategy, period, interval, **kwargs):
90
  return backtest_results
91
 
92
  @start_end_log
93
- def complete_test(strategy: str, period: str, interval: str, multiprocess=True, **kwargs):
94
- nifty50 = pd.read_csv("data/ind_nifty50list.csv")
 
 
 
95
  ticker_list = pd.read_csv("data/Ticker_List_NSE_India.csv")
96
 
97
  # Merging nifty50 and ticker_list dataframes to get 'YahooEquiv' column.
98
- nifty50 = nifty50.merge(ticker_list, "inner", left_on=['Symbol'], right_on=['SYMBOL'])
99
 
100
  if multiprocess:
101
  with Pool() as p:
102
- result = p.starmap(partial(run_strategy, **kwargs), zip(nifty50['YahooEquiv'].values, repeat(strategy), repeat(period), repeat(interval)))
103
  else:
104
- result = [run_strategy(nifty50['YahooEquiv'].values[i], strategy, period, interval, **kwargs) for i in range(len(nifty50))]
105
 
106
  df = pd.concat(result)
107
 
@@ -110,12 +117,32 @@ def complete_test(strategy: str, period: str, interval: str, multiprocess=True,
110
 
111
  return df.reset_index().drop(columns=['index'])
112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
  if __name__ == "__main__":
 
115
  # random_testing("")
116
  # data = fetch('RELIANCE.NS', period='1y', interval='15m')
117
  # df = yf.download('RELIANCE.NS', period='1yr', interval='15m')
118
-
119
- rt = complete_test("Order Block", '1mo', '15m', swing_hl=20)
120
- rt.to_excel('test/all_testing_2.xlsx', index=False)
121
- print(rt)
 
 
 
 
 
 
28
  @start_end_log
29
  def smc_ema_backtest(data, filename, **kwargs):
30
  bt = Backtest(data, SMC_ema, cash=kwargs['cash'], commission=kwargs['commission'])
31
+ results = bt.run(swing_window=kwargs['swing_hl'], ema1=kwargs['ema1'], ema2=kwargs['ema2'], close_on_crossover=kwargs['close_on_crossover'])
32
  bt.plot(filename=filename, open_browser=False)
33
  return results
34
 
 
41
 
42
  @start_end_log
43
  def run_strategy(ticker_symbol, strategy, period, interval, **kwargs):
44
+ default_kwargs = {'swing_hl': 10, 'ema1': 9, 'ema2':21, 'close_on_crossover': False, 'cash': 10000, 'commission': 0}
45
+ kwargs = default_kwargs | kwargs
46
  logger.info(f'Running {strategy} for {ticker_symbol}')
47
  # Fetching ohlc of random ticker_symbol.
48
  retries = 3
 
79
  # Converting pd.Series to pd.Dataframe
80
  backtest_results = backtest_results.to_frame().transpose()
81
 
82
+ backtest_results['Stock'] = ticker_symbol
83
  backtest_results['plot'] = plot
84
+ backtest_results['Sector'] = yf.Ticker(ticker_symbol).info.get('sectorKey')
85
+ backtest_results['Return [%]'] = backtest_results['Return [%]'].apply(lambda x: round(x, 2))
86
 
87
  # Reordering columns.
88
+ cols = ['Stock', 'Sector', 'Start', 'End', 'Return [%]', 'Equity Final [$]', 'Buy & Hold Return [%]', '# Trades',
89
  'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'plot']
90
  backtest_results = backtest_results[cols]
91
 
 
94
  return backtest_results
95
 
96
  @start_end_log
97
+ def complete_test(stock_list: str, strategy: str, period: str, interval: str, multiprocess: bool, **kwargs):
98
+ stock_list_map = {'Nifty 50': 'data/ind_nifty50list.csv', 'Nifty Next 50': 'data/ind_niftynext50list.csv', 'Nifty 100': 'data/ind_nifty100list.csv', 'Nifty 200': 'data/ind_nifty200list.csv'}
99
+ nifty_stocks = pd.read_csv(stock_list_map[stock_list])
100
+ nifty_stocks.columns = [x.upper() for x in nifty_stocks.columns]
101
+ logger.info(f"stock list columns: {nifty_stocks.columns}")
102
  ticker_list = pd.read_csv("data/Ticker_List_NSE_India.csv")
103
 
104
  # Merging nifty50 and ticker_list dataframes to get 'YahooEquiv' column.
105
+ nifty_stocks = nifty_stocks.merge(ticker_list, "inner", 'SYMBOL')
106
 
107
  if multiprocess:
108
  with Pool() as p:
109
+ result = p.starmap(partial(run_strategy, **kwargs), zip(nifty_stocks['YahooEquiv'].values, repeat(strategy), repeat(period), repeat(interval)))
110
  else:
111
+ result = [run_strategy(nifty_stocks['YahooEquiv'].values[i], strategy, period, interval, **kwargs) for i in range(len(nifty_stocks))]
112
 
113
  df = pd.concat(result)
114
 
 
117
 
118
  return df.reset_index().drop(columns=['index'])
119
 
120
+ def categorize_df(df: pd.DataFrame, col: str, sort_col: str | None = None):
121
+ categorized = df.groupby(col, sort=False)
122
+ mapping = {}
123
+ for name, group in categorized:
124
+ mapping[name] = group
125
+ # print(f"{name} mean: ", group[sort_col].mean())
126
+ # print(sorted(mapping.values(), key = lambda item: item[sort_col].mean(), reverse=True))
127
+ if sort_col:
128
+ mapping = dict([('all', df)]+sorted(mapping.items(), key = lambda item: item[1][sort_col].mean(), reverse=True))
129
+
130
+ for category, df in mapping.items():
131
+ mapping[category] = df.sort_values(by=[sort_col], ascending=False)
132
+ # print(mapping)
133
+ return mapping
134
 
135
  if __name__ == "__main__":
136
+ # pass
137
  # random_testing("")
138
  # data = fetch('RELIANCE.NS', period='1y', interval='15m')
139
  # df = yf.download('RELIANCE.NS', period='1yr', interval='15m')
140
+ # rt.to_excel('test/all_testing_2.xlsx', index=False)
141
+ #
142
+ # print(rt)
143
+
144
+ data = pd.read_csv(r"C:\Users\Dinesh\Downloads\Documents\2025-01-26T12-37_export.csv")
145
+ data = data[data['Select']]
146
+ print(data)
147
+ mapping = categorize_df(data, 'Sector', 'Return [%]')
148
+ print(mapping)
strategies.py CHANGED
@@ -92,11 +92,11 @@ class SMC_ema(SignalStrategy, TrailingStrategy):
92
  if trade.is_short and self.ma1 > self.ma2:
93
  trade.close()
94
 
95
- def smc_buy(self, data):
96
- return SMC(data).backtest_buy_signal_ob()
97
 
98
- def smc_sell(self, data):
99
- return SMC(data).backtest_sell_signal_ob()
100
 
101
 
102
  class SMCStructure(TrailingStrategy):
 
92
  if trade.is_short and self.ma1 > self.ma2:
93
  trade.close()
94
 
95
+ def smc_buy(self, data, swing_hl):
96
+ return SMC(data, swing_hl).backtest_buy_signal_ob()
97
 
98
+ def smc_sell(self, data, swing_hl):
99
+ return SMC(data, swing_hl).backtest_sell_signal_ob()
100
 
101
 
102
  class SMCStructure(TrailingStrategy):