Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained("apple/DCLM-Baseline-7B-8k") | |
model = AutoModelForCausalLM.from_pretrained("apple/DCLM-Baseline-7B-8k") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
prompt = "".join([f"{'[|Human|] ' if msg['role'] == 'user' else '[|AI|] '}{msg['content']}" for msg in messages]) | |
inputs = tokenizer(prompt, return_tensors="pt") | |
gen_kwargs = { | |
"max_new_tokens": max_tokens, | |
"top_p": top_p, | |
"temperature": temperature, | |
"do_sample": True, | |
"repetition_penalty": 1.1 | |
} | |
with torch.no_grad(): | |
output = model.generate(inputs['input_ids'], **gen_kwargs) | |
response = tokenizer.decode(output[0].tolist(), skip_special_tokens=True)[len(prompt):] | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |