Spaces:
Sleeping
Sleeping
function file
Browse files
functions/__pycache__/gptResponse.cpython-310.pyc
ADDED
Binary file (1.37 kB). View file
|
|
functions/__pycache__/sidebar.cpython-310.pyc
ADDED
Binary file (415 Bytes). View file
|
|
functions/__pycache__/web_chain.cpython-310.pyc
ADDED
Binary file (1.59 kB). View file
|
|
functions/gptResponse.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_openai import ChatOpenAI
|
2 |
+
from langchain_core.output_parsers import StrOutputParser
|
3 |
+
from langchain_core.prompts import ChatPromptTemplate
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import os
|
6 |
+
|
7 |
+
load_dotenv()
|
8 |
+
openai_key = os.getenv('OPENAI_API_KEY')
|
9 |
+
|
10 |
+
def get_response(user_query, chat_history, context):
|
11 |
+
template = """
|
12 |
+
You are a helpful assistant. Answer the following questions considering the background information of the conversation:
|
13 |
+
|
14 |
+
Chat History: {chat_history}
|
15 |
+
|
16 |
+
Background Information: {context}
|
17 |
+
|
18 |
+
User question: {user_question}
|
19 |
+
"""
|
20 |
+
|
21 |
+
|
22 |
+
llm = ChatOpenAI(api_key=openai_key)
|
23 |
+
try:
|
24 |
+
prompt = ChatPromptTemplate.from_template(template)
|
25 |
+
|
26 |
+
llm = ChatOpenAI(api_key=openai_key)
|
27 |
+
|
28 |
+
chain = prompt | llm | StrOutputParser()
|
29 |
+
|
30 |
+
value = chain.stream({
|
31 |
+
"chat_history": chat_history,
|
32 |
+
"context": context,
|
33 |
+
"user_question": user_query,
|
34 |
+
})
|
35 |
+
if value:
|
36 |
+
response = " ".join([part for part in value])
|
37 |
+
return response
|
38 |
+
else:
|
39 |
+
return "No response received from model."
|
40 |
+
except Exception as e:
|
41 |
+
return f"Error in generating response: {str(e)}"
|
functions/sidebar.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
def sidebar():
|
4 |
+
|
5 |
+
st.sidebar.page_link("app.py", label="Home")
|
6 |
+
st.sidebar.page_link("pages/chat_rag.py", label="RAG CHAT")
|
7 |
+
st.sidebar.page_link("pages/test.py", label="TESTING")
|
8 |
+
|
functions/web_chain.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.document_loaders import WebBaseLoader
|
2 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
3 |
+
from langchain_chroma import Chroma
|
4 |
+
from langchain_openai import OpenAIEmbeddings
|
5 |
+
from PyPDF2 import PdfReader
|
6 |
+
|
7 |
+
def get_pdf_text(pdf_docs):
|
8 |
+
text = ""
|
9 |
+
for pdf in pdf_docs:
|
10 |
+
pdf_reader = PdfReader(pdf)
|
11 |
+
for page in pdf_reader.pages:
|
12 |
+
text += page.extract_text()
|
13 |
+
return text
|
14 |
+
|
15 |
+
def loadUrlData(url):
|
16 |
+
loader = WebBaseLoader(url)
|
17 |
+
loader.requests_kwargs = {'verify':False}
|
18 |
+
html = loader.load()
|
19 |
+
return html
|
20 |
+
|
21 |
+
def splitDoc(data):
|
22 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
23 |
+
chunk_size=1000, chunk_overlap=200, add_start_index=True)
|
24 |
+
return text_splitter.split_documents(data)
|
25 |
+
|
26 |
+
def splitText(data):
|
27 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
28 |
+
chunk_size=400,
|
29 |
+
chunk_overlap=50,
|
30 |
+
length_function=len,
|
31 |
+
is_separator_regex=False,
|
32 |
+
)
|
33 |
+
return text_splitter.split_text(data)
|
34 |
+
|
35 |
+
def vectorize(data, type):
|
36 |
+
if type == "document":
|
37 |
+
docs = splitDoc(data)
|
38 |
+
return Chroma.from_documents(documents=docs, embedding=OpenAIEmbeddings())
|
39 |
+
elif type == "text":
|
40 |
+
texts = splitText(data)
|
41 |
+
return Chroma.from_texts(texts=texts, embedding=OpenAIEmbeddings())
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|