from langchain_openai import ChatOpenAI from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from dotenv import load_dotenv import os load_dotenv() openai_key = os.getenv( "OPENAI_API_KEY" ) # may wanna ask user for this or handle error when its not there def get_response(user_query, chat_history, context): template = """ You are a helpful assistant. Answer the following questions considering the background information of the conversation: Chat History: {chat_history} Background Information: {context} User question: {user_question} """ llm = ChatOpenAI(api_key=openai_key) try: prompt = ChatPromptTemplate.from_template(template) llm = ChatOpenAI(api_key=openai_key) chain = prompt | llm | StrOutputParser() value = chain.stream( { "chat_history": chat_history, "context": context, "user_question": user_query, } ) if value: response = " ".join([part for part in value]) return response else: return "No response received from model." except Exception as e: return f"Error in generating response: {str(e)}"