import streamlit as st from streamlit_chat import message from langchain.llms import CTransformers from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chains import ConversationChain from langchain.schema.output_parser import StrOutputParser from langchain.memory import ConversationBufferMemory from langchain import PromptTemplate, LLMChain #create llm llm = CTransformers(model="Israr-dawar/psychology_chatbot_quantized_model",model_type="llama", config={'max_new_tokens':128,'temperature':0.01}) def should_finish(next_input): """Returns True if the next input indicates that the user wants to finish the conversation.""" return next_input.lower() == "exit" # Create a prompt template template = """      You are a good psychologist. Please share your thoughts on the following text:      `{text}`      Now, could you please ask a question related to this `{text}`? """ prompt = PromptTemplate(template=template, input_variables=["text"]) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) # LLM chain with ConversationalBufferMemory object chain = LLMChain(prompt=prompt, llm=llm, memory = memory, output_parser = StrOutputParser()) st.title("Psychology ChatBot 🧑🏽‍⚕️") def conversation_chat(query): result = chain({"text": query, "chat_history": st.session_state['history']}) print("restult: ",result) st.session_state['history'].append((query, result["answer"])) return result["answer"] def initialize_session_state(): if 'history' not in st.session_state: st.session_state['history'] = [] if 'generated' not in st.session_state: st.session_state['generated'] = ["Hello! Ask me anything about 🤗"] if 'past' not in st.session_state: st.session_state['past'] = ["Hey! 👋"] def display_chat_history(): reply_container = st.container() container = st.container() with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_input("Question:", placeholder="I am a psychologist", key='input') submit_button = st.form_submit_button(label='Send') if submit_button and user_input: output = conversation_chat(user_input) st.session_state['past'].append(user_input) st.session_state['generated'].append(output) if st.session_state['generated']: with reply_container: for i in range(len(st.session_state['generated'])): message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs") message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji") # Initialize session state initialize_session_state() # Display chat history display_chat_history()