git clone https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-onnx git clone https://huggingface.co/microsoft/Phi-3-mini-128k-instruct-onnx pip install numpy pip install --pre onnxruntime-genai-directml pip install numpy pip install --pre onnxruntime-genai-cuda --index-url=https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-genai/pypi/simple/ curl https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/model-qa.py -o model-qa.py python model-qa.py -m Phi-3-mini-128k-instruct-onnx/directml/directml-int4-awq-block-128 -l 2048 import onnxruntime_genai as og import argparse import time def main(args): if args.verbose: print("Loading model...") if args.timings: started_timestamp = 0 first_token_timestamp = 0 model = og.Model(f'{args.model}') if args.verbose: print("Model loaded") tokenizer = og.Tokenizer(model) tokenizer_stream = tokenizer.create_stream() if args.verbose: print("Tokenizer created") if args.verbose: print() search_options = {name:getattr(args, name) for name in ['do_sample', 'max_length', 'min_length', 'top_p', 'top_k', 'temperature', 'repetition_penalty'] if name in args} # Keep asking for input prompts in a loop while True: text = input("Input: ") if not text: print("Error, input cannot be empty") continue if args.timings: started_timestamp = time.time() input_tokens = tokenizer.encode(args.system_prompt + text) params = og.GeneratorParams(model) params.try_use_cuda_graph_with_max_batch_size(1) params.set_search_options(**search_options) params.input_ids = input_tokens generator = og.Generator(model, params) if args.verbose: print("Generator created") if args.verbose: print("Running generation loop ...") if args.timings: first = True new_tokens = [] print() print("Output: ", end='', flush=True) try: while not generator.is_done(): generator.compute_logits() generator.generate_next_token() if args.timings: if first: first_token_timestamp = time.time() first = False new_token = generator.get_next_tokens()[0] print(tokenizer_stream.decode(new_token), end='', flush=True) if args.timings: new_tokens.append(new_token) except KeyboardInterrupt: print(" --control+c pressed, aborting generation--") print() print() if args.timings: prompt_time = first_token_timestamp - started_timestamp run_time = time.time() - first_token_timestamp print(f"Prompt length: {len(input_tokens)}, New tokens: {len(new_tokens)}, Time to first: {(prompt_time):.2f}s, Prompt tokens per second: {len(input_tokens)/prompt_time:.2f} tps, New tokens per second: {len(new_tokens)/run_time:.2f} tps") if __name__ == "__main__": parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS, description="End-to-end AI Question/Answer example for gen-ai") parser.add_argument('-m', '--model', type=str, required=True, help='Onnx model folder path (must contain config.json and model.onnx)') parser.add_argument('-i', '--min_length', type=int, help='Min number of tokens to generate including the prompt') parser.add_argument('-l', '--max_length', type=int, help='Max number of tokens to generate including the prompt') parser.add_argument('-ds', '--do_random_sampling', action='store_true', help='Do random sampling. When false, greedy or beam search are used to generate the output. Defaults to false') parser.add_argument('-p', '--top_p', type=float, help='Top p probability to sample with') parser.add_argument('-k', '--top_k', type=int, help='Top k tokens to sample from') parser.add_argument('-t', '--temperature', type=float, help='Temperature to sample with') parser.add_argument('-r', '--repetition_penalty', type=float, help='Repetition penalty to sample with') parser.add_argument('-v', '--verbose', action='store_true', default=False, help='Print verbose output and timing information. Defaults to false') parser.add_argument('-s', '--system_prompt', type=str, default='', help='Prepend a system prompt to the user input prompt. Defaults to empty') parser.add_argument('-g', '--timings', action='store_true', default=False, help='Print timing information for each generation step. Defaults to false') args = parser.parse_args() main(args)