Upload app_connected.py
Browse files- app_connected.py +184 -0
app_connected.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import pickle
|
7 |
+
from nltk.tokenize import RegexpTokenizer
|
8 |
+
from nltk.corpus import stopwords
|
9 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
10 |
+
from sklearn.linear_model import LogisticRegression
|
11 |
+
import re
|
12 |
+
import string
|
13 |
+
from nltk.stem import WordNetLemmatizer
|
14 |
+
import time
|
15 |
+
import transformers
|
16 |
+
import json
|
17 |
+
|
18 |
+
from biLSTM1 import biLSTM
|
19 |
+
from lstm_preprocessing import (
|
20 |
+
data_preprocessing,
|
21 |
+
get_words_by_freq,
|
22 |
+
padding,
|
23 |
+
preprocess_single_string
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
# 1-Lesha, 2-Lena, 3-Gal
|
29 |
+
# +++++++++++
|
30 |
+
# 1 -Lesha
|
31 |
+
|
32 |
+
# Load the saved model
|
33 |
+
with open('logistic_regression_model.pkl', 'rb') as file:
|
34 |
+
loaded_model_1 = pickle.load(file)
|
35 |
+
|
36 |
+
with open('tfidf_vectorizer.pkl', 'rb') as file:
|
37 |
+
vectorizer_1 = pickle.load(file)
|
38 |
+
|
39 |
+
# Load the stop words
|
40 |
+
stop_words = stopwords.words('english')
|
41 |
+
# Create a tokenizer
|
42 |
+
tokenizer = RegexpTokenizer(r'\w+')
|
43 |
+
|
44 |
+
def data_preprocessing(text: str) -> str:
|
45 |
+
"""preprocessing string: lowercase, removing html-tags, punctuation and stopwords
|
46 |
+
|
47 |
+
Args:
|
48 |
+
text (str): input string for preprocessing
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
str: preprocessed string
|
52 |
+
"""
|
53 |
+
|
54 |
+
text = text.lower()
|
55 |
+
text = re.sub('<.*?>', '', text) # html tags
|
56 |
+
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
|
57 |
+
lemmatizer = WordNetLemmatizer()
|
58 |
+
tokens = tokenizer.tokenize(text)
|
59 |
+
tokens = [lemmatizer.lemmatize(word) for word in tokens if not word.isdigit() and word not in stop_words]
|
60 |
+
return ' '.join(tokens)
|
61 |
+
|
62 |
+
# ++++
|
63 |
+
# Lena
|
64 |
+
|
65 |
+
|
66 |
+
def load_model_l():
|
67 |
+
model_finetuned = transformers.AutoModel.from_pretrained(
|
68 |
+
"nghuyong/ernie-2.0-base-en",
|
69 |
+
output_attentions = False,
|
70 |
+
output_hidden_states = False
|
71 |
+
)
|
72 |
+
model_finetuned.load_state_dict(torch.load('ErnieModel_imdb.pt', map_location=torch.device('cpu')))
|
73 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained("nghuyong/ernie-2.0-base-en")
|
74 |
+
return model_finetuned, tokenizer
|
75 |
+
|
76 |
+
def preprocess_text(text_input, max_len, tokenizer):
|
77 |
+
input_tokens = tokenizer(
|
78 |
+
text_input,
|
79 |
+
return_tensors='pt',
|
80 |
+
padding=True,
|
81 |
+
max_length=max_len,
|
82 |
+
truncation = True
|
83 |
+
)
|
84 |
+
return input_tokens
|
85 |
+
|
86 |
+
def predict_sentiment(model, input_tokens):
|
87 |
+
id2label = {0: "negative", 1: "positive"}
|
88 |
+
output = model(**input_tokens).pooler_output.detach().numpy()
|
89 |
+
with open('LogReg_imdb_Ernie.pkl', 'rb') as file:
|
90 |
+
cls = pickle.load(file)
|
91 |
+
result = id2label[int(cls.predict(output))]
|
92 |
+
return result
|
93 |
+
|
94 |
+
# ++++
|
95 |
+
# Gala
|
96 |
+
with open('/home/galkalin/nlp_project/vocab_to_int.json', 'r') as fp:
|
97 |
+
vocab_to_int = json.load(fp)
|
98 |
+
|
99 |
+
|
100 |
+
VOCAB_SIZE = len(vocab_to_int)+1
|
101 |
+
EMBEDDING_DIM = 32
|
102 |
+
HIDDEN_DIM = 64
|
103 |
+
N_LAYERS = 3
|
104 |
+
SEQ_LEN = 128
|
105 |
+
|
106 |
+
def load_model_g():
|
107 |
+
model = biLSTM(
|
108 |
+
vocab_size=VOCAB_SIZE,
|
109 |
+
embedding_dim=EMBEDDING_DIM,
|
110 |
+
hidden_dim=HIDDEN_DIM,
|
111 |
+
n_layers=N_LAYERS
|
112 |
+
)
|
113 |
+
model.load_state_dict(torch.load('biLSTM_model_do_05_lr001_best.pt', map_location=torch.device('cpu')))
|
114 |
+
return model
|
115 |
+
|
116 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
117 |
+
|
118 |
+
def predict_sentence(text: str, model: nn.Module) -> str:
|
119 |
+
id2label = {0: "negative", 1: "positive"}
|
120 |
+
output = model.to(device)(preprocess_single_string(text, SEQ_LEN, vocab_to_int).unsqueeze(0).to(device))
|
121 |
+
pred = int(output.round().item())
|
122 |
+
result = id2label[pred]
|
123 |
+
return result
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
# ++++++
|
128 |
+
# Lesha
|
129 |
+
|
130 |
+
|
131 |
+
# Create the Streamlit app
|
132 |
+
def main():
|
133 |
+
st.title('Sentiment Analysis App')
|
134 |
+
st.header('Classic ML, ErnieModel, bidirectional LSTM')
|
135 |
+
user_input = st.text_area('Please enter your review:')
|
136 |
+
st.write(user_input)
|
137 |
+
submit = st.button("Predict!")
|
138 |
+
col1, col2,col3 = st.columns(3)
|
139 |
+
if user_input is not None and submit:
|
140 |
+
with col1:
|
141 |
+
# Preprocess the user input
|
142 |
+
preprocessed_input_1 = data_preprocessing(user_input)
|
143 |
+
# Vectorize the preprocessed input
|
144 |
+
input_vector = vectorizer_1.transform([preprocessed_input_1])
|
145 |
+
start_time = time.time()
|
146 |
+
proba_1 = loaded_model_1.predict_proba(input_vector)[:, 1]
|
147 |
+
# Predict the sentiment using the loaded model
|
148 |
+
#prediction = loaded_model.predict(input_vector)[0]
|
149 |
+
prediction_1 = round(proba_1[0])
|
150 |
+
end_time = time.time()
|
151 |
+
# Display the predicted sentiment
|
152 |
+
if prediction_1 == 0:
|
153 |
+
st.write('The sentiment of your review is negative.')
|
154 |
+
st.write('Predicted probability:', (1 - round(proba_1[0], 2))*100, '%')
|
155 |
+
else:
|
156 |
+
st.write('The sentiment of your review is positive.')
|
157 |
+
st.write('Predicted probability:', (round(proba_1[0], 2))*100, '%')
|
158 |
+
st.write('Processing time:', round(end_time - start_time, 4), 'seconds')
|
159 |
+
# Lena
|
160 |
+
if user_input is not None and submit:
|
161 |
+
with col2:
|
162 |
+
model2, tokenizer = load_model_l()
|
163 |
+
start_time = time.time()
|
164 |
+
input_tokens = preprocess_text(user_input, 500, tokenizer)
|
165 |
+
output = predict_sentiment(model2, input_tokens)
|
166 |
+
end_time = time.time()
|
167 |
+
st.write('The sentiment of your review is', output)
|
168 |
+
st.write('Processing time:', round(end_time - start_time, 4), 'seconds')
|
169 |
+
# Gala
|
170 |
+
if user_input is not None and submit:
|
171 |
+
with col3:
|
172 |
+
model3 = load_model_g()
|
173 |
+
start_time = time.time()
|
174 |
+
output = predict_sentence(user_input,model3)
|
175 |
+
end_time = time.time()
|
176 |
+
st.write('The sentiment of your review is', output)
|
177 |
+
st.write('Processing time:', round(end_time - start_time, 4), 'seconds')
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
if __name__ == '__main__':
|
183 |
+
main()
|
184 |
+
|