Commit
路
05f3172
1
Parent(s):
7f437a0
Guardar mis cambios locales
Browse files
app.py
CHANGED
@@ -1,35 +1,77 @@
|
|
1 |
-
import
|
2 |
import pandas as pd
|
3 |
-
import
|
|
|
|
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
|
8 |
-
#
|
9 |
-
|
|
|
|
|
|
|
10 |
# Leer el archivo CSV
|
11 |
-
|
12 |
-
|
13 |
-
#
|
14 |
-
if 'Date'
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
)
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from statsmodels.tsa.arima.model import ARIMA
|
5 |
+
import pickle
|
6 |
|
7 |
+
# T铆tulo de la interfaz
|
8 |
+
st.title("MLCast v1.1 - Intelligent Sales Forecasting System")
|
9 |
|
10 |
+
# Subir archivo CSV
|
11 |
+
uploaded_file = st.file_uploader("Upload your store data here (must contain Date and Sales)", type="csv")
|
12 |
+
|
13 |
+
# Verificar si se subi贸 un archivo
|
14 |
+
if uploaded_file is not None:
|
15 |
# Leer el archivo CSV
|
16 |
+
df = pd.read_csv(uploaded_file)
|
17 |
+
|
18 |
+
# Verificar si las columnas necesarias est谩n presentes
|
19 |
+
if 'Date' in df.columns and 'Sale' in df.columns:
|
20 |
+
st.success("File uploaded successfully!")
|
21 |
+
|
22 |
+
# Mostrar una vista previa de los primeros datos
|
23 |
+
st.write(df.head())
|
24 |
+
|
25 |
+
# Convertir la columna 'Date' en tipo datetime
|
26 |
+
df['Date'] = pd.to_datetime(df['Date'])
|
27 |
+
|
28 |
+
# Renombrar las columnas para ARIMA
|
29 |
+
df_arima = df.rename(columns={'Date': 'ds', 'Sale': 'y'})
|
30 |
+
|
31 |
+
# Cargar el modelo ARIMA desde el archivo
|
32 |
+
with open('arima_sales_model.pkl', 'rb') as f:
|
33 |
+
arima_model = pickle.load(f)
|
34 |
+
|
35 |
+
# Realizar la predicci贸n para los pr贸ximos 30 d铆as (ajustable)
|
36 |
+
forecast_period = 30
|
37 |
+
forecast = arima_model.get_forecast(steps=forecast_period)
|
38 |
+
forecast_index = pd.date_range(df['Date'].max(), periods=forecast_period + 1, freq='D')[1:]
|
39 |
+
|
40 |
+
# Crear un DataFrame con las predicciones
|
41 |
+
forecast_df = pd.DataFrame({
|
42 |
+
'Date': forecast_index,
|
43 |
+
'Sales Forecast': forecast.predicted_mean
|
44 |
+
})
|
45 |
+
|
46 |
+
# Graficar los resultados
|
47 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
48 |
+
ax.plot(df['Date'], df['Sale'], label='Historical Sales', color='blue')
|
49 |
+
ax.plot(forecast_df['Date'], forecast_df['Sales Forecast'], label='Sales Forecast', color='red', linestyle='--')
|
50 |
+
ax.set_xlabel('Date')
|
51 |
+
ax.set_ylabel('Sales')
|
52 |
+
ax.set_title('Sales Forecasting with ARIMA')
|
53 |
+
ax.legend()
|
54 |
+
|
55 |
+
# Mostrar la gr谩fica
|
56 |
+
st.pyplot(fig)
|
57 |
+
|
58 |
+
# Opcional: Ajuste del rango de fechas para el pron贸stico
|
59 |
+
st.sidebar.title("Adjust Forecast Range")
|
60 |
+
start_date = st.sidebar.date_input('Start Date', df['Date'].min())
|
61 |
+
end_date = st.sidebar.date_input('End Date', df['Date'].max())
|
62 |
+
|
63 |
+
# Filtrar los datos seg煤n el rango seleccionado
|
64 |
+
filtered_df = df[(df['Date'] >= pd.to_datetime(start_date)) & (df['Date'] <= pd.to_datetime(end_date))]
|
65 |
+
|
66 |
+
# Graficar el rango ajustado
|
67 |
+
st.subheader(f"Sales Data from {start_date} to {end_date}")
|
68 |
+
fig_filtered, ax_filtered = plt.subplots(figsize=(10, 6))
|
69 |
+
ax_filtered.plot(filtered_df['Date'], filtered_df['Sale'], label=f'Sales from {start_date} to {end_date}')
|
70 |
+
ax_filtered.set_xlabel('Date')
|
71 |
+
ax_filtered.set_ylabel('Sale')
|
72 |
+
ax_filtered.set_title(f'Sales Forecasting from {start_date} to {end_date}')
|
73 |
+
ax_filtered.legend()
|
74 |
+
st.pyplot(fig_filtered)
|
75 |
+
|
76 |
+
else:
|
77 |
+
st.error("The uploaded file must contain at least 'Date' and 'Sales' columns.")
|