Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from scipy import ndimage
|
5 |
+
from scipy.ndimage.filters import convolve
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
def hysteresis(img, weak = 75, strong=255):
|
9 |
+
M, N = img.shape
|
10 |
+
for i in range(1, M-1):
|
11 |
+
for j in range(1, N-1):
|
12 |
+
if (img[i,j] == weak):
|
13 |
+
try:
|
14 |
+
if ((img[i+1, j-1] == strong) or (img[i+1, j] == strong) or (img[i+1, j+1] == strong)
|
15 |
+
or (img[i, j-1] == strong) or (img[i, j+1] == strong)
|
16 |
+
or (img[i-1, j-1] == strong) or (img[i-1, j] == strong) or (img[i-1, j+1] == strong)):
|
17 |
+
img[i, j] = strong
|
18 |
+
else:
|
19 |
+
img[i, j] = 0
|
20 |
+
except IndexError as e:
|
21 |
+
pass
|
22 |
+
return img
|
23 |
+
|
24 |
+
def threshold(img, lowThresholdRatio=0.05, highThresholdRatio=0.09):
|
25 |
+
|
26 |
+
highThreshold = img.max() * highThresholdRatio;
|
27 |
+
lowThreshold = highThreshold * lowThresholdRatio;
|
28 |
+
|
29 |
+
M, N = img.shape
|
30 |
+
res = np.zeros((M,N), dtype=np.int32)
|
31 |
+
|
32 |
+
weak = np.int32(25)
|
33 |
+
strong = np.int32(255)
|
34 |
+
|
35 |
+
strong_i, strong_j = np.where(img >= highThreshold)
|
36 |
+
zeros_i, zeros_j = np.where(img < lowThreshold)
|
37 |
+
|
38 |
+
weak_i, weak_j = np.where((img <= highThreshold) & (img >= lowThreshold))
|
39 |
+
|
40 |
+
res[strong_i, strong_j] = strong
|
41 |
+
res[weak_i, weak_j] = weak
|
42 |
+
|
43 |
+
return (res)
|
44 |
+
|
45 |
+
def non_max_suppression(img, D):
|
46 |
+
M, N = img.shape
|
47 |
+
Z = np.zeros((M,N), dtype=np.int32)
|
48 |
+
angle = D * 180. / np.pi
|
49 |
+
angle[angle < 0] += 180
|
50 |
+
|
51 |
+
|
52 |
+
for i in range(1,M-1):
|
53 |
+
for j in range(1,N-1):
|
54 |
+
try:
|
55 |
+
q = 255
|
56 |
+
r = 255
|
57 |
+
|
58 |
+
#angle 0
|
59 |
+
if (0 <= angle[i,j] < 22.5) or (157.5 <= angle[i,j] <= 180):
|
60 |
+
q = img[i, j+1]
|
61 |
+
r = img[i, j-1]
|
62 |
+
#angle 45
|
63 |
+
elif (22.5 <= angle[i,j] < 67.5):
|
64 |
+
q = img[i+1, j-1]
|
65 |
+
r = img[i-1, j+1]
|
66 |
+
#angle 90
|
67 |
+
elif (67.5 <= angle[i,j] < 112.5):
|
68 |
+
q = img[i+1, j]
|
69 |
+
r = img[i-1, j]
|
70 |
+
#angle 135
|
71 |
+
elif (112.5 <= angle[i,j] < 157.5):
|
72 |
+
q = img[i-1, j-1]
|
73 |
+
r = img[i+1, j+1]
|
74 |
+
|
75 |
+
if (img[i,j] >= q) and (img[i,j] >= r):
|
76 |
+
Z[i,j] = img[i,j]
|
77 |
+
else:
|
78 |
+
Z[i,j] = 0
|
79 |
+
|
80 |
+
except IndexError as e:
|
81 |
+
pass
|
82 |
+
|
83 |
+
return Z
|
84 |
+
|
85 |
+
def gaussian_kernel(size, sigma=1):
|
86 |
+
size = int(size) // 2
|
87 |
+
x, y = np.mgrid[-size:size+1, -size:size+1]
|
88 |
+
normal = 1 / (2.0 * np.pi * sigma**2)
|
89 |
+
g = np.exp(-((x**2 + y**2) / (2.0*sigma**2))) * normal
|
90 |
+
return g
|
91 |
+
|
92 |
+
def sobel_filters(img):
|
93 |
+
Kx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], np.float32)
|
94 |
+
Ky = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], np.float32)
|
95 |
+
|
96 |
+
Ix = ndimage.filters.convolve(img, Kx)
|
97 |
+
Iy = ndimage.filters.convolve(img, Ky)
|
98 |
+
|
99 |
+
G = np.hypot(Ix, Iy)
|
100 |
+
G = G / G.max() * 255
|
101 |
+
theta = np.arctan2(Iy, Ix)
|
102 |
+
|
103 |
+
return (G, theta)
|
104 |
+
|
105 |
+
def canny(img, kernel, sigma):
|
106 |
+
img_color = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
107 |
+
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
108 |
+
|
109 |
+
img_gaussian = convolve(img_gray, gaussian_kernel(kernel, sigma))
|
110 |
+
G, theta = sobel_filters(img_gaussian)
|
111 |
+
img_nonmax = non_max_suppression(G, theta)
|
112 |
+
img_threshold = threshold(img_nonmax)
|
113 |
+
img_final = hysteresis(img_threshold)
|
114 |
+
|
115 |
+
return img_final
|
116 |
+
|
117 |
+
|
118 |
+
interface = gr.Interface(
|
119 |
+
title = "Canny Edge Detector 🤖",
|
120 |
+
description = "<h3>The Canny edge detector is an edge detection operator that uses a multi-stage algorithm to detect a wide range of edges in images.</h3> <br> <b>Select an image 🖼</b>",
|
121 |
+
article='<a href="#"> Hello </a>',
|
122 |
+
allow_flagging = "never",
|
123 |
+
fn = canny,
|
124 |
+
inputs = [
|
125 |
+
gr.Image(),
|
126 |
+
gr.Slider(1, 9, step = 1, value=3, label = "Kernel Size"),
|
127 |
+
gr.Slider(1, 20, step = 5, value=10, label = "Sigma"),
|
128 |
+
],
|
129 |
+
outputs = "image"
|
130 |
+
)
|
131 |
+
|
132 |
+
interface.launch(share = False)
|