Update app.py
Browse files
app.py
CHANGED
@@ -6,15 +6,24 @@ import io
|
|
6 |
from PIL import Image
|
7 |
import subprocess
|
8 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
DESCRIPTION = "# Product Describe by Fluxi IA\n### Base Model [Florence-2] (https://huggingface.co/microsoft/Florence-2-large)"
|
15 |
|
16 |
@spaces.GPU
|
17 |
-
def run_example(task_prompt, image):
|
18 |
inputs = processor(text=task_prompt, images=image, return_tensors="pt").to("cuda")
|
19 |
generated_ids = model.generate(
|
20 |
input_ids=inputs["input_ids"],
|
@@ -32,14 +41,16 @@ def run_example(task_prompt, image):
|
|
32 |
)
|
33 |
return parsed_answer
|
34 |
|
35 |
-
def process_image(image, task_prompt):
|
36 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
|
|
|
|
37 |
if task_prompt == 'Product Caption':
|
38 |
task_prompt = '<MORE_DETAILED_CAPTION>'
|
39 |
elif task_prompt == 'OCR':
|
40 |
task_prompt = '<OCR>'
|
41 |
|
42 |
-
results = run_example(task_prompt, image)
|
43 |
|
44 |
# Remove the key and get the text value
|
45 |
if results and task_prompt in results:
|
@@ -80,11 +91,16 @@ single_task_list =[
|
|
80 |
'Product Caption', 'OCR'
|
81 |
]
|
82 |
|
|
|
|
|
|
|
|
|
83 |
with gr.Blocks(css=css) as demo:
|
84 |
gr.Markdown(DESCRIPTION)
|
85 |
with gr.Tab(label="Product Image Select"):
|
86 |
with gr.Row():
|
87 |
with gr.Column():
|
|
|
88 |
input_img = gr.Image(label="Input Picture")
|
89 |
task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Product Caption")
|
90 |
submit_btn = gr.Button(value="Submit")
|
@@ -108,8 +124,8 @@ with gr.Blocks(css=css) as demo:
|
|
108 |
```
|
109 |
""")
|
110 |
|
111 |
-
submit_btn.click(process_image, [input_img, task_prompt], [output_text])
|
112 |
|
113 |
demo.load(lambda: None, inputs=None, outputs=None, js=js)
|
114 |
|
115 |
-
demo.launch(debug=True)
|
|
|
6 |
from PIL import Image
|
7 |
import subprocess
|
8 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
9 |
+
|
10 |
+
model_ids = {
|
11 |
+
"Florence-vl2": 'J-LAB/Florence-vl2',
|
12 |
+
"Florence-vl3": 'J-LAB/Florence-vl3',
|
13 |
+
"Florence_2_F_FluxiAI_Product_Caption": 'J-LAB/Florence_2_F_FluxiAI_Product_Caption'
|
14 |
+
}
|
15 |
+
|
16 |
+
# Load model and processor based on the selected model
|
17 |
+
def load_model(model_name):
|
18 |
+
model_id = model_ids[model_name]
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda").eval()
|
20 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
21 |
+
return model, processor
|
22 |
|
23 |
DESCRIPTION = "# Product Describe by Fluxi IA\n### Base Model [Florence-2] (https://huggingface.co/microsoft/Florence-2-large)"
|
24 |
|
25 |
@spaces.GPU
|
26 |
+
def run_example(model, processor, task_prompt, image):
|
27 |
inputs = processor(text=task_prompt, images=image, return_tensors="pt").to("cuda")
|
28 |
generated_ids = model.generate(
|
29 |
input_ids=inputs["input_ids"],
|
|
|
41 |
)
|
42 |
return parsed_answer
|
43 |
|
44 |
+
def process_image(image, task_prompt, model_name):
|
45 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
46 |
+
model, processor = load_model(model_name)
|
47 |
+
|
48 |
if task_prompt == 'Product Caption':
|
49 |
task_prompt = '<MORE_DETAILED_CAPTION>'
|
50 |
elif task_prompt == 'OCR':
|
51 |
task_prompt = '<OCR>'
|
52 |
|
53 |
+
results = run_example(model, processor, task_prompt, image)
|
54 |
|
55 |
# Remove the key and get the text value
|
56 |
if results and task_prompt in results:
|
|
|
91 |
'Product Caption', 'OCR'
|
92 |
]
|
93 |
|
94 |
+
model_list = [
|
95 |
+
'Florence-vl2', 'Florence-vl3', 'Florence_2_F_FluxiAI_Product_Caption'
|
96 |
+
]
|
97 |
+
|
98 |
with gr.Blocks(css=css) as demo:
|
99 |
gr.Markdown(DESCRIPTION)
|
100 |
with gr.Tab(label="Product Image Select"):
|
101 |
with gr.Row():
|
102 |
with gr.Column():
|
103 |
+
model_name = gr.Dropdown(choices=model_list, label="Model", value="Florence-vl3")
|
104 |
input_img = gr.Image(label="Input Picture")
|
105 |
task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Product Caption")
|
106 |
submit_btn = gr.Button(value="Submit")
|
|
|
124 |
```
|
125 |
""")
|
126 |
|
127 |
+
submit_btn.click(process_image, [input_img, task_prompt, model_name], [output_text])
|
128 |
|
129 |
demo.load(lambda: None, inputs=None, outputs=None, js=js)
|
130 |
|
131 |
+
demo.launch(debug=True)
|