Update app.py
Browse files
app.py
CHANGED
@@ -119,101 +119,14 @@ def draw_ocr_bboxes(image, prediction):
|
|
119 |
|
120 |
def process_image(image, task_prompt, text_input=None, model_id='J-LAB/Florence-Idesire'):
|
121 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
122 |
-
if task_prompt == '
|
123 |
task_prompt = '<MORE_DETAILED_CAPTION>'
|
124 |
results = run_example(task_prompt, image, model_id=model_id)
|
125 |
return results, None
|
126 |
-
elif task_prompt == 'Detailed Caption':
|
127 |
-
task_prompt = '<DETAILED_CAPTION>'
|
128 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
129 |
-
return results, None
|
130 |
elif task_prompt == 'More Detailed Caption':
|
131 |
task_prompt = '<MORE_DETAILED_CAPTION>'
|
132 |
results = run_example(task_prompt, image, model_id=model_id)
|
133 |
return results, None
|
134 |
-
elif task_prompt == 'Caption + Grounding':
|
135 |
-
task_prompt = '<CAPTION>'
|
136 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
137 |
-
text_input = results[task_prompt]
|
138 |
-
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
139 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
140 |
-
results['<CAPTION>'] = text_input
|
141 |
-
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
142 |
-
return results, fig_to_pil(fig)
|
143 |
-
elif task_prompt == 'Detailed Caption + Grounding':
|
144 |
-
task_prompt = '<DETAILED_CAPTION>'
|
145 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
146 |
-
text_input = results[task_prompt]
|
147 |
-
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
148 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
149 |
-
results['<DETAILED_CAPTION>'] = text_input
|
150 |
-
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
151 |
-
return results, fig_to_pil(fig)
|
152 |
-
elif task_prompt == 'More Detailed Caption + Grounding':
|
153 |
-
task_prompt = '<MORE_DETAILED_CAPTION>'
|
154 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
155 |
-
text_input = results[task_prompt]
|
156 |
-
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
157 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
158 |
-
results['<MORE_DETAILED_CAPTION>'] = text_input
|
159 |
-
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
160 |
-
return results, fig_to_pil(fig)
|
161 |
-
elif task_prompt == 'Object Detection':
|
162 |
-
task_prompt = '<OD>'
|
163 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
164 |
-
fig = plot_bbox(image, results['<OD>'])
|
165 |
-
return results, fig_to_pil(fig)
|
166 |
-
elif task_prompt == 'Dense Region Caption':
|
167 |
-
task_prompt = '<DENSE_REGION_CAPTION>'
|
168 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
169 |
-
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
170 |
-
return results, fig_to_pil(fig)
|
171 |
-
elif task_prompt == 'Region Proposal':
|
172 |
-
task_prompt = '<REGION_PROPOSAL>'
|
173 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
174 |
-
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
175 |
-
return results, fig_to_pil(fig)
|
176 |
-
elif task_prompt == 'Caption to Phrase Grounding':
|
177 |
-
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
178 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
179 |
-
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
180 |
-
return results, fig_to_pil(fig)
|
181 |
-
elif task_prompt == 'Referring Expression Segmentation':
|
182 |
-
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
|
183 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
184 |
-
output_image = copy.deepcopy(image)
|
185 |
-
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
186 |
-
return results, output_image
|
187 |
-
elif task_prompt == 'Region to Segmentation':
|
188 |
-
task_prompt = '<REGION_TO_SEGMENTATION>'
|
189 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
190 |
-
output_image = copy.deepcopy(image)
|
191 |
-
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
192 |
-
return results, output_image
|
193 |
-
elif task_prompt == 'Open Vocabulary Detection':
|
194 |
-
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
195 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
196 |
-
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
197 |
-
fig = plot_bbox(image, bbox_results)
|
198 |
-
return results, fig_to_pil(fig)
|
199 |
-
elif task_prompt == 'Region to Category':
|
200 |
-
task_prompt = '<REGION_TO_CATEGORY>'
|
201 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
202 |
-
return results, None
|
203 |
-
elif task_prompt == 'Region to Description':
|
204 |
-
task_prompt = '<REGION_TO_DESCRIPTION>'
|
205 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
206 |
-
return results, None
|
207 |
-
elif task_prompt == 'OCR':
|
208 |
-
task_prompt = '<OCR>'
|
209 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
210 |
-
return results, None
|
211 |
-
elif task_prompt == 'OCR with Region':
|
212 |
-
task_prompt = '<OCR_WITH_REGION>'
|
213 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
214 |
-
output_image = copy.deepcopy(image)
|
215 |
-
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
216 |
-
return results, output_image
|
217 |
else:
|
218 |
return "", None # Return empty string and None for unknown task prompts
|
219 |
|
@@ -227,25 +140,10 @@ css = """
|
|
227 |
|
228 |
|
229 |
single_task_list =[
|
230 |
-
'
|
231 |
-
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
|
232 |
-
'Referring Expression Segmentation', 'Region to Segmentation',
|
233 |
-
'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
|
234 |
-
'OCR', 'OCR with Region'
|
235 |
-
]
|
236 |
-
|
237 |
-
cascased_task_list =[
|
238 |
-
'Caption + Grounding', 'Detailed Caption + Grounding', 'More Detailed Caption + Grounding'
|
239 |
]
|
240 |
|
241 |
|
242 |
-
def update_task_dropdown(choice):
|
243 |
-
if choice == 'Cascased task':
|
244 |
-
return gr.Dropdown(choices=cascased_task_list, value='Caption + Grounding')
|
245 |
-
else:
|
246 |
-
return gr.Dropdown(choices=single_task_list, value='Caption')
|
247 |
-
|
248 |
-
|
249 |
|
250 |
with gr.Blocks(css=css) as demo:
|
251 |
gr.Markdown(DESCRIPTION)
|
@@ -256,25 +154,12 @@ with gr.Blocks(css=css) as demo:
|
|
256 |
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='J-LAB/Florence-Idesire')
|
257 |
task_type = gr.Radio(choices=['Single task', 'Cascased task'], label='Task type selector', value='Single task')
|
258 |
task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Caption")
|
259 |
-
task_type.change(fn=update_task_dropdown, inputs=task_type, outputs=task_prompt)
|
260 |
text_input = gr.Textbox(label="Text Input (optional)")
|
261 |
submit_btn = gr.Button(value="Submit")
|
262 |
with gr.Column():
|
263 |
output_text = gr.Textbox(label="Output Text")
|
264 |
output_img = gr.Image(label="Output Image")
|
265 |
|
266 |
-
gr.Examples(
|
267 |
-
examples=[
|
268 |
-
["image1.jpg", 'Object Detection'],
|
269 |
-
["image2.jpg", 'OCR with Region']
|
270 |
-
],
|
271 |
-
inputs=[input_img, task_prompt],
|
272 |
-
outputs=[output_text, output_img],
|
273 |
-
fn=process_image,
|
274 |
-
cache_examples=True,
|
275 |
-
label='Try examples'
|
276 |
-
)
|
277 |
-
|
278 |
submit_btn.click(process_image, [input_img, task_prompt, text_input, model_selector], [output_text, output_img])
|
279 |
|
280 |
demo.launch(debug=True)
|
|
|
119 |
|
120 |
def process_image(image, task_prompt, text_input=None, model_id='J-LAB/Florence-Idesire'):
|
121 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
122 |
+
if task_prompt == 'Product Caption':
|
123 |
task_prompt = '<MORE_DETAILED_CAPTION>'
|
124 |
results = run_example(task_prompt, image, model_id=model_id)
|
125 |
return results, None
|
|
|
|
|
|
|
|
|
126 |
elif task_prompt == 'More Detailed Caption':
|
127 |
task_prompt = '<MORE_DETAILED_CAPTION>'
|
128 |
results = run_example(task_prompt, image, model_id=model_id)
|
129 |
return results, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
else:
|
131 |
return "", None # Return empty string and None for unknown task prompts
|
132 |
|
|
|
140 |
|
141 |
|
142 |
single_task_list =[
|
143 |
+
'More Detailed Caption', 'Product Caption'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
]
|
145 |
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
with gr.Blocks(css=css) as demo:
|
149 |
gr.Markdown(DESCRIPTION)
|
|
|
154 |
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='J-LAB/Florence-Idesire')
|
155 |
task_type = gr.Radio(choices=['Single task', 'Cascased task'], label='Task type selector', value='Single task')
|
156 |
task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Caption")
|
|
|
157 |
text_input = gr.Textbox(label="Text Input (optional)")
|
158 |
submit_btn = gr.Button(value="Submit")
|
159 |
with gr.Column():
|
160 |
output_text = gr.Textbox(label="Output Text")
|
161 |
output_img = gr.Image(label="Output Image")
|
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
submit_btn.click(process_image, [input_img, task_prompt, text_input, model_selector], [output_text, output_img])
|
164 |
|
165 |
demo.launch(debug=True)
|