Update app.py
Browse files
app.py
CHANGED
@@ -39,29 +39,27 @@ def fig_to_pil(fig):
|
|
39 |
return Image.open(buf)
|
40 |
|
41 |
@spaces.GPU
|
42 |
-
def
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
else:
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
early_stopping=False,
|
55 |
-
do_sample=False,
|
56 |
-
num_beams=3,
|
57 |
-
)
|
58 |
-
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
59 |
-
parsed_answer = processor.post_process_generation(
|
60 |
-
generated_text,
|
61 |
-
task=task_prompt,
|
62 |
-
image_size=(image.width, image.height)
|
63 |
-
)
|
64 |
-
return parsed_answer
|
65 |
|
66 |
def plot_bbox(image, data):
|
67 |
fig, ax = plt.subplots()
|
@@ -117,27 +115,7 @@ def draw_ocr_bboxes(image, prediction):
|
|
117 |
fill=color)
|
118 |
return image
|
119 |
|
120 |
-
def process_image(image, task_prompt, text_input=None, model_id='J-LAB/Florence_2_B_FluxiAI_Product_Caption'):
|
121 |
-
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
122 |
-
if task_prompt == 'Product Caption':
|
123 |
-
task_prompt = '<PC>'
|
124 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
125 |
-
elif task_prompt == 'More Detailed Caption':
|
126 |
-
task_prompt = '<MORE_DETAILED_CAPTION>'
|
127 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
128 |
-
else:
|
129 |
-
return "", None # Return empty string and None for unknown task prompts
|
130 |
|
131 |
-
# Remove the key and get the text value
|
132 |
-
if results and task_prompt in results:
|
133 |
-
output_text = results[task_prompt]
|
134 |
-
else:
|
135 |
-
output_text = ""
|
136 |
-
|
137 |
-
# Convert newline characters to HTML line breaks
|
138 |
-
output_text = output_text.replace("\n\n", "<br><br>").replace("\n", "<br>")
|
139 |
-
|
140 |
-
return output_text, None
|
141 |
|
142 |
|
143 |
css = """
|
|
|
39 |
return Image.open(buf)
|
40 |
|
41 |
@spaces.GPU
|
42 |
+
def process_image(image, task_prompt, text_input=None, model_id='J-LAB/Florence_2_B_FluxiAI_Product_Caption'):
|
43 |
+
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
44 |
+
if task_prompt == 'Product Caption':
|
45 |
+
task_prompt = '<PC>'
|
46 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
47 |
+
elif task_prompt == 'More Detailed Caption':
|
48 |
+
task_prompt = '<MORE_DETAILED_CAPTION>'
|
49 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
50 |
+
else:
|
51 |
+
return "", None # Return empty string and None for unknown task prompts
|
52 |
+
|
53 |
+
# Remove the key and get the text value
|
54 |
+
if results and task_prompt in results:
|
55 |
+
output_text = results[task_prompt]
|
56 |
else:
|
57 |
+
output_text = ""
|
58 |
+
|
59 |
+
# Convert newline characters to HTML line breaks
|
60 |
+
output_text = output_text.replace("\n\n", "<br><br>").replace("\n", "<br>")
|
61 |
+
|
62 |
+
return output_text, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
def plot_bbox(image, data):
|
65 |
fig, ax = plt.subplots()
|
|
|
115 |
fill=color)
|
116 |
return image
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
|
121 |
css = """
|