J-LAB commited on
Commit
5df4b4d
·
verified ·
1 Parent(s): 9ec0fd2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -5,6 +5,8 @@ import io
5
  import base64 # Adicionando a biblioteca base64 para decodificação
6
  from PIL import Image
7
  import subprocess
 
 
8
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
9
 
10
  # Carregando o modelo e o processador
@@ -90,20 +92,20 @@ document.querySelector('button').addEventListener('click', function() {
90
  });
91
  """
92
 
93
- single_task_list =[ 'Product Caption', 'OCR' ]
94
 
95
  with gr.Blocks(css=css) as demo:
96
  gr.Markdown(DESCRIPTION)
97
  with gr.Tab(label="Product Image Select"):
98
  with gr.Row():
99
  with gr.Column():
100
- input_img = gr.Image(label="Input Picture", tool="editor", source="upload", type="pil") # Suporte a PIL images
101
  task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Product Caption")
102
  submit_btn = gr.Button(value="Submit")
103
  with gr.Column():
104
  output_text = gr.HTML(label="Output Text", elem_id="output")
105
 
106
- gr.Markdown("""
107
  ## How to use via API
108
  To use this model via API, you can follow the example code below:
109
 
@@ -126,12 +128,11 @@ with gr.Blocks(css=css) as demo:
126
 
127
  response = requests.post("http://your-space-url-here", json=payload)
128
  print(response.json())
129
- ```
130
-
131
  """)
132
 
133
  submit_btn.click(process_image, [input_img, task_prompt], [output_text])
134
 
135
  demo.load(lambda: None, inputs=None, outputs=None, js=js)
136
 
137
- demo.launch(debug=True)
 
5
  import base64 # Adicionando a biblioteca base64 para decodificação
6
  from PIL import Image
7
  import subprocess
8
+
9
+ # Instalando a dependência flash-attn se necessário
10
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
11
 
12
  # Carregando o modelo e o processador
 
92
  });
93
  """
94
 
95
+ single_task_list = ['Product Caption', 'OCR']
96
 
97
  with gr.Blocks(css=css) as demo:
98
  gr.Markdown(DESCRIPTION)
99
  with gr.Tab(label="Product Image Select"):
100
  with gr.Row():
101
  with gr.Column():
102
+ input_img = gr.Image(label="Input Picture", source="upload", type="pil") # Suporte a PIL images
103
  task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Product Caption")
104
  submit_btn = gr.Button(value="Submit")
105
  with gr.Column():
106
  output_text = gr.HTML(label="Output Text", elem_id="output")
107
 
108
+ gr.Markdown("""
109
  ## How to use via API
110
  To use this model via API, you can follow the example code below:
111
 
 
128
 
129
  response = requests.post("http://your-space-url-here", json=payload)
130
  print(response.json())
131
+ ```
 
132
  """)
133
 
134
  submit_btn.click(process_image, [input_img, task_prompt], [output_text])
135
 
136
  demo.load(lambda: None, inputs=None, outputs=None, js=js)
137
 
138
+ demo.launch(debug=True)