Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,7 @@ model_id = 'J-LAB/Florence_2_B_FluxiAI_Product_Caption'
|
|
11 |
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda").eval()
|
12 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
13 |
|
14 |
-
DESCRIPTION = "#
|
15 |
|
16 |
@spaces.GPU
|
17 |
def run_example(task_prompt, image):
|
@@ -61,14 +61,31 @@ css = """
|
|
61 |
|
62 |
with gr.Blocks(css=css) as demo:
|
63 |
gr.Markdown(DESCRIPTION)
|
64 |
-
with gr.Tab(label="
|
65 |
with gr.Row():
|
66 |
with gr.Column():
|
67 |
input_img = gr.Image(label="Input Picture")
|
68 |
submit_btn = gr.Button(value="Submit")
|
69 |
with gr.Column():
|
70 |
output_text = gr.HTML(label="Output Text", elem_id="output")
|
|
|
|
|
|
|
|
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
submit_btn.click(process_image, [input_img], [output_text])
|
73 |
|
74 |
demo.launch(debug=True)
|
|
|
11 |
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda").eval()
|
12 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
13 |
|
14 |
+
DESCRIPTION = "#Product Describe by Fluxi IA\n### Base Model [Florence-2] (https://huggingface.co/microsoft/Florence-2-large) ]"
|
15 |
|
16 |
@spaces.GPU
|
17 |
def run_example(task_prompt, image):
|
|
|
61 |
|
62 |
with gr.Blocks(css=css) as demo:
|
63 |
gr.Markdown(DESCRIPTION)
|
64 |
+
with gr.Tab(label="Product Image Select"):
|
65 |
with gr.Row():
|
66 |
with gr.Column():
|
67 |
input_img = gr.Image(label="Input Picture")
|
68 |
submit_btn = gr.Button(value="Submit")
|
69 |
with gr.Column():
|
70 |
output_text = gr.HTML(label="Output Text", elem_id="output")
|
71 |
+
|
72 |
+
gr.Markdown("""
|
73 |
+
## How to use via API
|
74 |
+
To use this model via API, you can follow the example code below:
|
75 |
|
76 |
+
```python
|
77 |
+
!pip install gradio_client
|
78 |
+
from gradio_client import Client, handle_file
|
79 |
+
|
80 |
+
client = Client("J-LAB/Fluxi-IA")
|
81 |
+
result = client.predict(
|
82 |
+
image=handle_file('https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png'),
|
83 |
+
api_name="/process_image"
|
84 |
+
)
|
85 |
+
print(result)
|
86 |
+
```
|
87 |
+
""")
|
88 |
+
|
89 |
submit_btn.click(process_image, [input_img], [output_text])
|
90 |
|
91 |
demo.launch(debug=True)
|