J-LAB commited on
Commit
63ed30f
·
verified ·
1 Parent(s): dd36999

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -2
app.py CHANGED
@@ -11,7 +11,7 @@ model_id = 'J-LAB/Florence_2_B_FluxiAI_Product_Caption'
11
  model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda").eval()
12
  processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
13
 
14
- DESCRIPTION = "# [Florence-2 Product Describe by Fluxi IA](https://huggingface.co/microsoft/Florence-2-large)"
15
 
16
  @spaces.GPU
17
  def run_example(task_prompt, image):
@@ -61,14 +61,31 @@ css = """
61
 
62
  with gr.Blocks(css=css) as demo:
63
  gr.Markdown(DESCRIPTION)
64
- with gr.Tab(label="Florence-2 Image Captioning"):
65
  with gr.Row():
66
  with gr.Column():
67
  input_img = gr.Image(label="Input Picture")
68
  submit_btn = gr.Button(value="Submit")
69
  with gr.Column():
70
  output_text = gr.HTML(label="Output Text", elem_id="output")
 
 
 
 
71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  submit_btn.click(process_image, [input_img], [output_text])
73
 
74
  demo.launch(debug=True)
 
11
  model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda").eval()
12
  processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
13
 
14
+ DESCRIPTION = "#Product Describe by Fluxi IA\n### Base Model [Florence-2] (https://huggingface.co/microsoft/Florence-2-large) ]"
15
 
16
  @spaces.GPU
17
  def run_example(task_prompt, image):
 
61
 
62
  with gr.Blocks(css=css) as demo:
63
  gr.Markdown(DESCRIPTION)
64
+ with gr.Tab(label="Product Image Select"):
65
  with gr.Row():
66
  with gr.Column():
67
  input_img = gr.Image(label="Input Picture")
68
  submit_btn = gr.Button(value="Submit")
69
  with gr.Column():
70
  output_text = gr.HTML(label="Output Text", elem_id="output")
71
+
72
+ gr.Markdown("""
73
+ ## How to use via API
74
+ To use this model via API, you can follow the example code below:
75
 
76
+ ```python
77
+ !pip install gradio_client
78
+ from gradio_client import Client, handle_file
79
+
80
+ client = Client("J-LAB/Fluxi-IA")
81
+ result = client.predict(
82
+ image=handle_file('https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png'),
83
+ api_name="/process_image"
84
+ )
85
+ print(result)
86
+ ```
87
+ """)
88
+
89
  submit_btn.click(process_image, [input_img], [output_text])
90
 
91
  demo.launch(debug=True)