J3 commited on
Commit
f0c83cd
1 Parent(s): 59b67fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -9
app.py CHANGED
@@ -3,8 +3,8 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
-
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
@@ -12,13 +12,19 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
 
 
 
 
 
 
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
 
 
22
 
23
 
24
  def translate(audio):
@@ -26,9 +32,17 @@ def translate(audio):
26
  return outputs["text"]
27
 
28
 
 
 
 
 
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
 
 
32
  return speech.cpu()
33
 
34
 
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ # from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
+ from transformers import pipeline
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ # processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
16
+
17
+ # model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
18
+ # vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
+
20
+ # embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
+ # speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
 
 
23
 
24
+ from transformers import VitsModel, VitsTokenizer
25
+
26
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-nld")
27
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-nld")
28
 
29
 
30
  def translate(audio):
 
32
  return outputs["text"]
33
 
34
 
35
+ # def synthesise(text):
36
+ # inputs = processor(text=text, return_tensors="pt")
37
+ # speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
38
+ # return speech.cpu()
39
+
40
  def synthesise(text):
41
+ inputs = tokenizer(text=text, return_tensors="pt")
42
+ input_ids = inputs["input_ids"]
43
+ with torch.no_grad():
44
+ outputs = model(input_ids)
45
+ speech = outputs.audio[0]
46
  return speech.cpu()
47
 
48