from toolbox import CatchException, update_ui, ProxyNetworkActivate, update_ui_lastest_msg, get_log_folder, get_user from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything install_msg =""" 1. python -m pip install torch --index-url https://download.pytorch.org/whl/cpu 2. python -m pip install transformers protobuf langchain sentence-transformers faiss-cpu nltk beautifulsoup4 bitsandbytes tabulate icetk --upgrade 3. python -m pip install unstructured[all-docs] --upgrade 4. python -c 'import nltk; nltk.download("punkt")' """ @CatchException def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): """ txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径 llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行 plugin_kwargs 插件模型的参数,暂时没有用武之地 chatbot 聊天显示框的句柄,用于显示给用户 history 聊天历史,前情提要 system_prompt 给gpt的静默提醒 web_port 当前软件运行的端口号 """ history = [] # 清空历史,以免输入溢出 # < --------------------读取参数--------------- > if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg") kai_id = plugin_kwargs.get("advanced_arg", 'default') chatbot.append((f"向`{kai_id}`知识库中添加文件。", "[Local Message] 从一批文件(txt, md, tex)中读取数据构建知识库, 然后进行问答。")) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # resolve deps try: # from zh_langchain import construct_vector_store # from langchain.embeddings.huggingface import HuggingFaceEmbeddings from crazy_functions.vector_fns.vector_database import knowledge_archive_interface except Exception as e: chatbot.append(["依赖不足", f"{str(e)}\n\n导入依赖失败。请用以下命令安装" + install_msg]) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # from .crazy_utils import try_install_deps # try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain']) # yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history) return # < --------------------读取文件--------------- > file_manifest = [] spl = ["txt", "doc", "docx", "email", "epub", "html", "json", "md", "msg", "pdf", "ppt", "pptx", "rtf"] for sp in spl: _, file_manifest_tmp, _ = get_files_from_everything(txt, type=f'.{sp}') file_manifest += file_manifest_tmp if len(file_manifest) == 0: chatbot.append(["没有找到任何可读取文件", "当前支持的格式包括: txt, md, docx, pptx, pdf, json等"]) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 return # < -------------------预热文本向量化模组--------------- > chatbot.append(['
'.join(file_manifest), "正在预热文本向量化模组, 如果是第一次运行, 将消耗较长时间下载中文向量化模型..."]) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 print('Checking Text2vec ...') from langchain.embeddings.huggingface import HuggingFaceEmbeddings with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络 HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese") # < -------------------构建知识库--------------- > chatbot.append(['
'.join(file_manifest), "正在构建知识库..."]) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 print('Establishing knowledge archive ...') with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络 kai = knowledge_archive_interface() vs_path = get_log_folder(user=get_user(chatbot), plugin_name='vec_store') kai.feed_archive(file_manifest=file_manifest, vs_path=vs_path, id=kai_id) kai_files = kai.get_loaded_file(vs_path=vs_path) kai_files = '
'.join(kai_files) # chatbot.append(['知识库构建成功', "正在将知识库存储至cookie中"]) # yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # chatbot._cookies['langchain_plugin_embedding'] = kai.get_current_archive_id() # chatbot._cookies['lock_plugin'] = 'crazy_functions.知识库文件注入->读取知识库作答' # chatbot.append(['完成', "“根据知识库作答”函数插件已经接管问答系统, 提问吧! 但注意, 您接下来不能再使用其他插件了,刷新页面即可以退出知识库问答模式。"]) chatbot.append(['构建完成', f"当前知识库内的有效文件:\n\n---\n\n{kai_files}\n\n---\n\n请切换至“知识库问答”插件进行知识库访问, 或者使用此插件继续上传更多文件。"]) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新 @CatchException def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port=-1): # resolve deps try: # from zh_langchain import construct_vector_store # from langchain.embeddings.huggingface import HuggingFaceEmbeddings from crazy_functions.vector_fns.vector_database import knowledge_archive_interface except Exception as e: chatbot.append(["依赖不足", f"{str(e)}\n\n导入依赖失败。请用以下命令安装" + install_msg]) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # from .crazy_utils import try_install_deps # try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain']) # yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history) return # < ------------------- --------------- > kai = knowledge_archive_interface() if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg") kai_id = plugin_kwargs.get("advanced_arg", 'default') vs_path = get_log_folder(user=get_user(chatbot), plugin_name='vec_store') resp, prompt = kai.answer_with_archive_by_id(txt, kai_id, vs_path) chatbot.append((txt, f'[知识库 {kai_id}] ' + prompt)) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新 gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive( inputs=prompt, inputs_show_user=txt, llm_kwargs=llm_kwargs, chatbot=chatbot, history=[], sys_prompt=system_prompt ) history.extend((prompt, gpt_say)) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新