Spaces:
Running
Running
File size: 3,088 Bytes
1380717 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
"""Magic functions for rendering vega-lite specifications."""
__all__ = ["vegalite"]
import json
import warnings
import IPython
from IPython.core import magic_arguments
from narwhals.dependencies import is_pandas_dataframe as _is_pandas_dataframe
from altair.vegalite import v5 as vegalite_v5
try:
import yaml
YAML_AVAILABLE = True
except ImportError:
YAML_AVAILABLE = False
RENDERERS = {
"vega-lite": {
"5": vegalite_v5.VegaLite,
},
}
TRANSFORMERS = {
"vega-lite": {
"5": vegalite_v5.data_transformers,
},
}
def _prepare_data(data, data_transformers):
"""Convert input data to data for use within schema."""
if data is None or isinstance(data, dict):
return data
elif _is_pandas_dataframe(data):
if func := data_transformers.get():
data = func(data)
return data
elif isinstance(data, str):
return {"url": data}
else:
warnings.warn(f"data of type {type(data)} not recognized", stacklevel=1)
return data
def _get_variable(name):
"""Get a variable from the notebook namespace."""
ip = IPython.get_ipython()
if ip is None:
msg = (
"Magic command must be run within an IPython "
"environment, in which get_ipython() is defined."
)
raise ValueError(msg)
if name not in ip.user_ns:
msg = f"argument '{name}' does not match the name of any defined variable"
raise NameError(msg)
return ip.user_ns[name]
@magic_arguments.magic_arguments()
@magic_arguments.argument(
"data",
nargs="?",
help="local variablename of a pandas DataFrame to be used as the dataset",
)
@magic_arguments.argument("-v", "--version", dest="version", default="v5")
@magic_arguments.argument("-j", "--json", dest="json", action="store_true")
def vegalite(line, cell):
"""
Cell magic for displaying vega-lite visualizations in CoLab.
%%vegalite [dataframe] [--json] [--version='v5']
Visualize the contents of the cell using Vega-Lite, optionally
specifying a pandas DataFrame object to be used as the dataset.
if --json is passed, then input is parsed as json rather than yaml.
"""
args = magic_arguments.parse_argstring(vegalite, line)
existing_versions = {"v5": "5"}
version = existing_versions[args.version]
assert version in RENDERERS["vega-lite"]
VegaLite = RENDERERS["vega-lite"][version]
data_transformers = TRANSFORMERS["vega-lite"][version]
if args.json:
spec = json.loads(cell)
elif not YAML_AVAILABLE:
try:
spec = json.loads(cell)
except json.JSONDecodeError as err:
msg = (
"%%vegalite: spec is not valid JSON. "
"Install pyyaml to parse spec as yaml"
)
raise ValueError(msg) from err
else:
spec = yaml.load(cell, Loader=yaml.SafeLoader)
if args.data is not None:
data = _get_variable(args.data)
spec["data"] = _prepare_data(data, data_transformers)
return VegaLite(spec)
|