Spaces:
Running
Running
File size: 15,231 Bytes
1380717 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
from __future__ import annotations
import json
import pathlib
from typing import Any
import anywidget
import traitlets
import altair as alt
from altair import TopLevelSpec
from altair.utils._vegafusion_data import (
compile_to_vegafusion_chart_state,
using_vegafusion,
)
from altair.utils.selection import IndexSelection, IntervalSelection, PointSelection
_here = pathlib.Path(__file__).parent
class Params(traitlets.HasTraits):
"""Traitlet class storing a JupyterChart's params."""
def __init__(self, trait_values):
super().__init__()
for key, value in trait_values.items():
if isinstance(value, (int, float)):
traitlet_type = traitlets.Float()
elif isinstance(value, str):
traitlet_type = traitlets.Unicode()
elif isinstance(value, list):
traitlet_type = traitlets.List()
elif isinstance(value, dict):
traitlet_type = traitlets.Dict()
else:
traitlet_type = traitlets.Any()
# Add the new trait.
self.add_traits(**{key: traitlet_type})
# Set the trait's value.
setattr(self, key, value)
def __repr__(self):
return f"Params({self.trait_values()})"
class Selections(traitlets.HasTraits):
"""Traitlet class storing a JupyterChart's selections."""
def __init__(self, trait_values):
super().__init__()
for key, value in trait_values.items():
if isinstance(value, IndexSelection):
traitlet_type = traitlets.Instance(IndexSelection)
elif isinstance(value, PointSelection):
traitlet_type = traitlets.Instance(PointSelection)
elif isinstance(value, IntervalSelection):
traitlet_type = traitlets.Instance(IntervalSelection)
else:
msg = f"Unexpected selection type: {type(value)}"
raise ValueError(msg)
# Add the new trait.
self.add_traits(**{key: traitlet_type})
# Set the trait's value.
setattr(self, key, value)
# Make read-only
self.observe(self._make_read_only, names=key)
def __repr__(self):
return f"Selections({self.trait_values()})"
def _make_read_only(self, change):
"""Work around to make traits read-only, but still allow us to change them internally."""
if change["name"] in self.traits() and change["old"] != change["new"]:
self._set_value(change["name"], change["old"])
msg = (
"Selections may not be set from Python.\n"
f"Attempted to set select: {change['name']}"
)
raise ValueError(msg)
def _set_value(self, key, value):
self.unobserve(self._make_read_only, names=key)
setattr(self, key, value)
self.observe(self._make_read_only, names=key)
def load_js_src() -> str:
return (_here / "js" / "index.js").read_text()
class JupyterChart(anywidget.AnyWidget):
_esm = load_js_src()
_css = r"""
.vega-embed {
/* Make sure action menu isn't cut off */
overflow: visible;
}
"""
# Public traitlets
chart = traitlets.Instance(TopLevelSpec, allow_none=True)
spec = traitlets.Dict(allow_none=True).tag(sync=True)
debounce_wait = traitlets.Float(default_value=10).tag(sync=True)
max_wait = traitlets.Bool(default_value=True).tag(sync=True)
local_tz = traitlets.Unicode(default_value=None, allow_none=True).tag(sync=True)
debug = traitlets.Bool(default_value=False)
embed_options = traitlets.Dict(default_value=None, allow_none=True).tag(sync=True)
# Internal selection traitlets
_selection_types = traitlets.Dict()
_vl_selections = traitlets.Dict().tag(sync=True)
# Internal param traitlets
_params = traitlets.Dict().tag(sync=True)
# Internal comm traitlets for VegaFusion support
_chart_state = traitlets.Any(allow_none=True)
_js_watch_plan = traitlets.Any(allow_none=True).tag(sync=True)
_js_to_py_updates = traitlets.Any(allow_none=True).tag(sync=True)
_py_to_js_updates = traitlets.Any(allow_none=True).tag(sync=True)
# Track whether charts are configured for offline use
_is_offline = False
@classmethod
def enable_offline(cls, offline: bool = True):
"""
Configure JupyterChart's offline behavior.
Parameters
----------
offline: bool
If True, configure JupyterChart to operate in offline mode where JavaScript
dependencies are loaded from vl-convert.
If False, configure it to operate in online mode where JavaScript dependencies
are loaded from CDN dynamically. This is the default behavior.
"""
from altair.utils._importers import import_vl_convert, vl_version_for_vl_convert
if offline:
if cls._is_offline:
# Already offline
return
vlc = import_vl_convert()
src_lines = load_js_src().split("\n")
# Remove leading lines with only whitespace, comments, or imports
while src_lines and (
len(src_lines[0].strip()) == 0
or src_lines[0].startswith("import")
or src_lines[0].startswith("//")
):
src_lines.pop(0)
src = "\n".join(src_lines)
# vl-convert's javascript_bundle function creates a self-contained JavaScript bundle
# for JavaScript snippets that import from a small set of dependencies that
# vl-convert includes. To see the available imports and their imported names, run
# import vl_convert as vlc
# help(vlc.javascript_bundle)
bundled_src = vlc.javascript_bundle(
src, vl_version=vl_version_for_vl_convert()
)
cls._esm = bundled_src
cls._is_offline = True
else:
cls._esm = load_js_src()
cls._is_offline = False
def __init__(
self,
chart: TopLevelSpec,
debounce_wait: int = 10,
max_wait: bool = True,
debug: bool = False,
embed_options: dict | None = None,
**kwargs: Any,
):
"""
Jupyter Widget for displaying and updating Altair Charts, and retrieving selection and parameter values.
Parameters
----------
chart: Chart
Altair Chart instance
debounce_wait: int
Debouncing wait time in milliseconds. Updates will be sent from the client to the kernel
after debounce_wait milliseconds of no chart interactions.
max_wait: bool
If True (default), updates will be sent from the client to the kernel every debounce_wait
milliseconds even if there are ongoing chart interactions. If False, updates will not be
sent until chart interactions have completed.
debug: bool
If True, debug messages will be printed
embed_options: dict
Options to pass to vega-embed.
See https://github.com/vega/vega-embed?tab=readme-ov-file#options
"""
self.params = Params({})
self.selections = Selections({})
super().__init__(
chart=chart,
debounce_wait=debounce_wait,
max_wait=max_wait,
debug=debug,
embed_options=embed_options,
**kwargs,
)
@traitlets.observe("chart")
def _on_change_chart(self, change): # noqa: C901
"""Updates the JupyterChart's internal state when the wrapped Chart instance changes."""
new_chart = change.new
selection_watches = []
selection_types = {}
initial_params = {}
initial_vl_selections = {}
empty_selections = {}
if new_chart is None:
with self.hold_sync():
self.spec = None
self._selection_types = selection_types
self._vl_selections = initial_vl_selections
self._params = initial_params
return
params = getattr(new_chart, "params", [])
if params is not alt.Undefined:
for param in new_chart.params:
if isinstance(param.name, alt.ParameterName):
clean_name = param.name.to_json().strip('"')
else:
clean_name = param.name
select = getattr(param, "select", alt.Undefined)
if select != alt.Undefined:
if not isinstance(select, dict):
select = select.to_dict()
select_type = select["type"]
if select_type == "point":
if not (
select.get("fields", None) or select.get("encodings", None)
):
# Point selection with no associated fields or encodings specified.
# This is an index-based selection
selection_types[clean_name] = "index"
empty_selections[clean_name] = IndexSelection(
name=clean_name, value=[], store=[]
)
else:
selection_types[clean_name] = "point"
empty_selections[clean_name] = PointSelection(
name=clean_name, value=[], store=[]
)
elif select_type == "interval":
selection_types[clean_name] = "interval"
empty_selections[clean_name] = IntervalSelection(
name=clean_name, value={}, store=[]
)
else:
msg = f"Unexpected selection type {select.type}"
raise ValueError(msg)
selection_watches.append(clean_name)
initial_vl_selections[clean_name] = {"value": None, "store": []}
else:
clean_value = param.value if param.value != alt.Undefined else None
initial_params[clean_name] = clean_value
# Handle the params generated by transforms
for param_name in collect_transform_params(new_chart):
initial_params[param_name] = None
# Setup params
self.params = Params(initial_params)
def on_param_traitlet_changed(param_change):
new_params = dict(self._params)
new_params[param_change["name"]] = param_change["new"]
self._params = new_params
self.params.observe(on_param_traitlet_changed)
# Setup selections
self.selections = Selections(empty_selections)
# Update properties all together
with self.hold_sync():
if using_vegafusion():
if self.local_tz is None:
self.spec = None
def on_local_tz_change(change):
self._init_with_vegafusion(change["new"])
self.observe(on_local_tz_change, ["local_tz"])
else:
self._init_with_vegafusion(self.local_tz)
else:
self.spec = new_chart.to_dict()
self._selection_types = selection_types
self._vl_selections = initial_vl_selections
self._params = initial_params
def _init_with_vegafusion(self, local_tz: str):
if self.chart is not None:
vegalite_spec = self.chart.to_dict(context={"pre_transform": False})
with self.hold_sync():
self._chart_state = compile_to_vegafusion_chart_state(
vegalite_spec, local_tz
)
self._js_watch_plan = self._chart_state.get_watch_plan()[
"client_to_server"
]
self.spec = self._chart_state.get_transformed_spec()
# Callback to update chart state and send updates back to client
def on_js_to_py_updates(change):
if self.debug:
updates_str = json.dumps(change["new"], indent=2)
print(
f"JavaScript to Python VegaFusion updates:\n {updates_str}"
)
updates = self._chart_state.update(change["new"])
if self.debug:
updates_str = json.dumps(updates, indent=2)
print(
f"Python to JavaScript VegaFusion updates:\n {updates_str}"
)
self._py_to_js_updates = updates
self.observe(on_js_to_py_updates, ["_js_to_py_updates"])
@traitlets.observe("_params")
def _on_change_params(self, change):
for param_name, value in change.new.items():
setattr(self.params, param_name, value)
@traitlets.observe("_vl_selections")
def _on_change_selections(self, change):
"""Updates the JupyterChart's public selections traitlet in response to changes that the JavaScript logic makes to the internal _selections traitlet."""
for selection_name, selection_dict in change.new.items():
value = selection_dict["value"]
store = selection_dict["store"]
selection_type = self._selection_types[selection_name]
if selection_type == "index":
self.selections._set_value(
selection_name,
IndexSelection.from_vega(selection_name, signal=value, store=store),
)
elif selection_type == "point":
self.selections._set_value(
selection_name,
PointSelection.from_vega(selection_name, signal=value, store=store),
)
elif selection_type == "interval":
self.selections._set_value(
selection_name,
IntervalSelection.from_vega(
selection_name, signal=value, store=store
),
)
def collect_transform_params(chart: TopLevelSpec) -> set[str]:
"""
Collect the names of params that are defined by transforms.
Parameters
----------
chart: Chart from which to extract transform params
Returns
-------
set of param names
"""
transform_params = set()
# Handle recursive case
for prop in ("layer", "concat", "hconcat", "vconcat"):
for child in getattr(chart, prop, []):
transform_params.update(collect_transform_params(child))
# Handle chart's own transforms
transforms = getattr(chart, "transform", [])
transforms = transforms if transforms != alt.Undefined else []
for tx in transforms:
if hasattr(tx, "param"):
transform_params.add(tx.param)
return transform_params
|