Spaces:
Running
Running
File size: 19,624 Bytes
1380717 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
from functools import lru_cache
from logging import getLogger
from typing import List, Optional
from .constant import (
COMMON_SAFE_ASCII_CHARACTERS,
TRACE,
UNICODE_SECONDARY_RANGE_KEYWORD,
)
from .utils import (
is_accentuated,
is_arabic,
is_arabic_isolated_form,
is_case_variable,
is_cjk,
is_emoticon,
is_hangul,
is_hiragana,
is_katakana,
is_latin,
is_punctuation,
is_separator,
is_symbol,
is_thai,
is_unprintable,
remove_accent,
unicode_range,
)
class MessDetectorPlugin:
"""
Base abstract class used for mess detection plugins.
All detectors MUST extend and implement given methods.
"""
def eligible(self, character: str) -> bool:
"""
Determine if given character should be fed in.
"""
raise NotImplementedError # pragma: nocover
def feed(self, character: str) -> None:
"""
The main routine to be executed upon character.
Insert the logic in witch the text would be considered chaotic.
"""
raise NotImplementedError # pragma: nocover
def reset(self) -> None: # pragma: no cover
"""
Permit to reset the plugin to the initial state.
"""
raise NotImplementedError
@property
def ratio(self) -> float:
"""
Compute the chaos ratio based on what your feed() has seen.
Must NOT be lower than 0.; No restriction gt 0.
"""
raise NotImplementedError # pragma: nocover
class TooManySymbolOrPunctuationPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._punctuation_count: int = 0
self._symbol_count: int = 0
self._character_count: int = 0
self._last_printable_char: Optional[str] = None
self._frenzy_symbol_in_word: bool = False
def eligible(self, character: str) -> bool:
return character.isprintable()
def feed(self, character: str) -> None:
self._character_count += 1
if (
character != self._last_printable_char
and character not in COMMON_SAFE_ASCII_CHARACTERS
):
if is_punctuation(character):
self._punctuation_count += 1
elif (
character.isdigit() is False
and is_symbol(character)
and is_emoticon(character) is False
):
self._symbol_count += 2
self._last_printable_char = character
def reset(self) -> None: # pragma: no cover
self._punctuation_count = 0
self._character_count = 0
self._symbol_count = 0
@property
def ratio(self) -> float:
if self._character_count == 0:
return 0.0
ratio_of_punctuation: float = (
self._punctuation_count + self._symbol_count
) / self._character_count
return ratio_of_punctuation if ratio_of_punctuation >= 0.3 else 0.0
class TooManyAccentuatedPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._character_count: int = 0
self._accentuated_count: int = 0
def eligible(self, character: str) -> bool:
return character.isalpha()
def feed(self, character: str) -> None:
self._character_count += 1
if is_accentuated(character):
self._accentuated_count += 1
def reset(self) -> None: # pragma: no cover
self._character_count = 0
self._accentuated_count = 0
@property
def ratio(self) -> float:
if self._character_count < 8:
return 0.0
ratio_of_accentuation: float = self._accentuated_count / self._character_count
return ratio_of_accentuation if ratio_of_accentuation >= 0.35 else 0.0
class UnprintablePlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._unprintable_count: int = 0
self._character_count: int = 0
def eligible(self, character: str) -> bool:
return True
def feed(self, character: str) -> None:
if is_unprintable(character):
self._unprintable_count += 1
self._character_count += 1
def reset(self) -> None: # pragma: no cover
self._unprintable_count = 0
@property
def ratio(self) -> float:
if self._character_count == 0:
return 0.0
return (self._unprintable_count * 8) / self._character_count
class SuspiciousDuplicateAccentPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._successive_count: int = 0
self._character_count: int = 0
self._last_latin_character: Optional[str] = None
def eligible(self, character: str) -> bool:
return character.isalpha() and is_latin(character)
def feed(self, character: str) -> None:
self._character_count += 1
if (
self._last_latin_character is not None
and is_accentuated(character)
and is_accentuated(self._last_latin_character)
):
if character.isupper() and self._last_latin_character.isupper():
self._successive_count += 1
# Worse if its the same char duplicated with different accent.
if remove_accent(character) == remove_accent(self._last_latin_character):
self._successive_count += 1
self._last_latin_character = character
def reset(self) -> None: # pragma: no cover
self._successive_count = 0
self._character_count = 0
self._last_latin_character = None
@property
def ratio(self) -> float:
if self._character_count == 0:
return 0.0
return (self._successive_count * 2) / self._character_count
class SuspiciousRange(MessDetectorPlugin):
def __init__(self) -> None:
self._suspicious_successive_range_count: int = 0
self._character_count: int = 0
self._last_printable_seen: Optional[str] = None
def eligible(self, character: str) -> bool:
return character.isprintable()
def feed(self, character: str) -> None:
self._character_count += 1
if (
character.isspace()
or is_punctuation(character)
or character in COMMON_SAFE_ASCII_CHARACTERS
):
self._last_printable_seen = None
return
if self._last_printable_seen is None:
self._last_printable_seen = character
return
unicode_range_a: Optional[str] = unicode_range(self._last_printable_seen)
unicode_range_b: Optional[str] = unicode_range(character)
if is_suspiciously_successive_range(unicode_range_a, unicode_range_b):
self._suspicious_successive_range_count += 1
self._last_printable_seen = character
def reset(self) -> None: # pragma: no cover
self._character_count = 0
self._suspicious_successive_range_count = 0
self._last_printable_seen = None
@property
def ratio(self) -> float:
if self._character_count <= 24:
return 0.0
ratio_of_suspicious_range_usage: float = (
self._suspicious_successive_range_count * 2
) / self._character_count
return ratio_of_suspicious_range_usage
class SuperWeirdWordPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._word_count: int = 0
self._bad_word_count: int = 0
self._foreign_long_count: int = 0
self._is_current_word_bad: bool = False
self._foreign_long_watch: bool = False
self._character_count: int = 0
self._bad_character_count: int = 0
self._buffer: str = ""
self._buffer_accent_count: int = 0
def eligible(self, character: str) -> bool:
return True
def feed(self, character: str) -> None:
if character.isalpha():
self._buffer += character
if is_accentuated(character):
self._buffer_accent_count += 1
if (
self._foreign_long_watch is False
and (is_latin(character) is False or is_accentuated(character))
and is_cjk(character) is False
and is_hangul(character) is False
and is_katakana(character) is False
and is_hiragana(character) is False
and is_thai(character) is False
):
self._foreign_long_watch = True
return
if not self._buffer:
return
if (
character.isspace() or is_punctuation(character) or is_separator(character)
) and self._buffer:
self._word_count += 1
buffer_length: int = len(self._buffer)
self._character_count += buffer_length
if buffer_length >= 4:
if self._buffer_accent_count / buffer_length > 0.34:
self._is_current_word_bad = True
# Word/Buffer ending with an upper case accentuated letter are so rare,
# that we will consider them all as suspicious. Same weight as foreign_long suspicious.
if (
is_accentuated(self._buffer[-1])
and self._buffer[-1].isupper()
and all(_.isupper() for _ in self._buffer) is False
):
self._foreign_long_count += 1
self._is_current_word_bad = True
if buffer_length >= 24 and self._foreign_long_watch:
camel_case_dst = [
i
for c, i in zip(self._buffer, range(0, buffer_length))
if c.isupper()
]
probable_camel_cased: bool = False
if camel_case_dst and (len(camel_case_dst) / buffer_length <= 0.3):
probable_camel_cased = True
if not probable_camel_cased:
self._foreign_long_count += 1
self._is_current_word_bad = True
if self._is_current_word_bad:
self._bad_word_count += 1
self._bad_character_count += len(self._buffer)
self._is_current_word_bad = False
self._foreign_long_watch = False
self._buffer = ""
self._buffer_accent_count = 0
elif (
character not in {"<", ">", "-", "=", "~", "|", "_"}
and character.isdigit() is False
and is_symbol(character)
):
self._is_current_word_bad = True
self._buffer += character
def reset(self) -> None: # pragma: no cover
self._buffer = ""
self._is_current_word_bad = False
self._foreign_long_watch = False
self._bad_word_count = 0
self._word_count = 0
self._character_count = 0
self._bad_character_count = 0
self._foreign_long_count = 0
@property
def ratio(self) -> float:
if self._word_count <= 10 and self._foreign_long_count == 0:
return 0.0
return self._bad_character_count / self._character_count
class CjkInvalidStopPlugin(MessDetectorPlugin):
"""
GB(Chinese) based encoding often render the stop incorrectly when the content does not fit and
can be easily detected. Searching for the overuse of '丅' and '丄'.
"""
def __init__(self) -> None:
self._wrong_stop_count: int = 0
self._cjk_character_count: int = 0
def eligible(self, character: str) -> bool:
return True
def feed(self, character: str) -> None:
if character in {"丅", "丄"}:
self._wrong_stop_count += 1
return
if is_cjk(character):
self._cjk_character_count += 1
def reset(self) -> None: # pragma: no cover
self._wrong_stop_count = 0
self._cjk_character_count = 0
@property
def ratio(self) -> float:
if self._cjk_character_count < 16:
return 0.0
return self._wrong_stop_count / self._cjk_character_count
class ArchaicUpperLowerPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._buf: bool = False
self._character_count_since_last_sep: int = 0
self._successive_upper_lower_count: int = 0
self._successive_upper_lower_count_final: int = 0
self._character_count: int = 0
self._last_alpha_seen: Optional[str] = None
self._current_ascii_only: bool = True
def eligible(self, character: str) -> bool:
return True
def feed(self, character: str) -> None:
is_concerned = character.isalpha() and is_case_variable(character)
chunk_sep = is_concerned is False
if chunk_sep and self._character_count_since_last_sep > 0:
if (
self._character_count_since_last_sep <= 64
and character.isdigit() is False
and self._current_ascii_only is False
):
self._successive_upper_lower_count_final += (
self._successive_upper_lower_count
)
self._successive_upper_lower_count = 0
self._character_count_since_last_sep = 0
self._last_alpha_seen = None
self._buf = False
self._character_count += 1
self._current_ascii_only = True
return
if self._current_ascii_only is True and character.isascii() is False:
self._current_ascii_only = False
if self._last_alpha_seen is not None:
if (character.isupper() and self._last_alpha_seen.islower()) or (
character.islower() and self._last_alpha_seen.isupper()
):
if self._buf is True:
self._successive_upper_lower_count += 2
self._buf = False
else:
self._buf = True
else:
self._buf = False
self._character_count += 1
self._character_count_since_last_sep += 1
self._last_alpha_seen = character
def reset(self) -> None: # pragma: no cover
self._character_count = 0
self._character_count_since_last_sep = 0
self._successive_upper_lower_count = 0
self._successive_upper_lower_count_final = 0
self._last_alpha_seen = None
self._buf = False
self._current_ascii_only = True
@property
def ratio(self) -> float:
if self._character_count == 0:
return 0.0
return self._successive_upper_lower_count_final / self._character_count
class ArabicIsolatedFormPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._character_count: int = 0
self._isolated_form_count: int = 0
def reset(self) -> None: # pragma: no cover
self._character_count = 0
self._isolated_form_count = 0
def eligible(self, character: str) -> bool:
return is_arabic(character)
def feed(self, character: str) -> None:
self._character_count += 1
if is_arabic_isolated_form(character):
self._isolated_form_count += 1
@property
def ratio(self) -> float:
if self._character_count < 8:
return 0.0
isolated_form_usage: float = self._isolated_form_count / self._character_count
return isolated_form_usage
@lru_cache(maxsize=1024)
def is_suspiciously_successive_range(
unicode_range_a: Optional[str], unicode_range_b: Optional[str]
) -> bool:
"""
Determine if two Unicode range seen next to each other can be considered as suspicious.
"""
if unicode_range_a is None or unicode_range_b is None:
return True
if unicode_range_a == unicode_range_b:
return False
if "Latin" in unicode_range_a and "Latin" in unicode_range_b:
return False
if "Emoticons" in unicode_range_a or "Emoticons" in unicode_range_b:
return False
# Latin characters can be accompanied with a combining diacritical mark
# eg. Vietnamese.
if ("Latin" in unicode_range_a or "Latin" in unicode_range_b) and (
"Combining" in unicode_range_a or "Combining" in unicode_range_b
):
return False
keywords_range_a, keywords_range_b = unicode_range_a.split(
" "
), unicode_range_b.split(" ")
for el in keywords_range_a:
if el in UNICODE_SECONDARY_RANGE_KEYWORD:
continue
if el in keywords_range_b:
return False
# Japanese Exception
range_a_jp_chars, range_b_jp_chars = (
unicode_range_a
in (
"Hiragana",
"Katakana",
),
unicode_range_b in ("Hiragana", "Katakana"),
)
if (range_a_jp_chars or range_b_jp_chars) and (
"CJK" in unicode_range_a or "CJK" in unicode_range_b
):
return False
if range_a_jp_chars and range_b_jp_chars:
return False
if "Hangul" in unicode_range_a or "Hangul" in unicode_range_b:
if "CJK" in unicode_range_a or "CJK" in unicode_range_b:
return False
if unicode_range_a == "Basic Latin" or unicode_range_b == "Basic Latin":
return False
# Chinese/Japanese use dedicated range for punctuation and/or separators.
if ("CJK" in unicode_range_a or "CJK" in unicode_range_b) or (
unicode_range_a in ["Katakana", "Hiragana"]
and unicode_range_b in ["Katakana", "Hiragana"]
):
if "Punctuation" in unicode_range_a or "Punctuation" in unicode_range_b:
return False
if "Forms" in unicode_range_a or "Forms" in unicode_range_b:
return False
if unicode_range_a == "Basic Latin" or unicode_range_b == "Basic Latin":
return False
return True
@lru_cache(maxsize=2048)
def mess_ratio(
decoded_sequence: str, maximum_threshold: float = 0.2, debug: bool = False
) -> float:
"""
Compute a mess ratio given a decoded bytes sequence. The maximum threshold does stop the computation earlier.
"""
detectors: List[MessDetectorPlugin] = [
md_class() for md_class in MessDetectorPlugin.__subclasses__()
]
length: int = len(decoded_sequence) + 1
mean_mess_ratio: float = 0.0
if length < 512:
intermediary_mean_mess_ratio_calc: int = 32
elif length <= 1024:
intermediary_mean_mess_ratio_calc = 64
else:
intermediary_mean_mess_ratio_calc = 128
for character, index in zip(decoded_sequence + "\n", range(length)):
for detector in detectors:
if detector.eligible(character):
detector.feed(character)
if (
index > 0 and index % intermediary_mean_mess_ratio_calc == 0
) or index == length - 1:
mean_mess_ratio = sum(dt.ratio for dt in detectors)
if mean_mess_ratio >= maximum_threshold:
break
if debug:
logger = getLogger("charset_normalizer")
logger.log(
TRACE,
"Mess-detector extended-analysis start. "
f"intermediary_mean_mess_ratio_calc={intermediary_mean_mess_ratio_calc} mean_mess_ratio={mean_mess_ratio} "
f"maximum_threshold={maximum_threshold}",
)
if len(decoded_sequence) > 16:
logger.log(TRACE, f"Starting with: {decoded_sequence[:16]}")
logger.log(TRACE, f"Ending with: {decoded_sequence[-16::]}")
for dt in detectors: # pragma: nocover
logger.log(TRACE, f"{dt.__class__}: {dt.ratio}")
return round(mean_mess_ratio, 3)
|