Spaces:
Running
Running
File size: 23,876 Bytes
1380717 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 |
from collections import deque
from copy import copy
from dataclasses import dataclass, is_dataclass
from enum import Enum
from functools import lru_cache
from typing import (
Any,
Callable,
Deque,
Dict,
FrozenSet,
List,
Mapping,
Sequence,
Set,
Tuple,
Type,
Union,
)
from fastapi.exceptions import RequestErrorModel
from fastapi.types import IncEx, ModelNameMap, UnionType
from pydantic import BaseModel, create_model
from pydantic.version import VERSION as P_VERSION
from starlette.datastructures import UploadFile
from typing_extensions import Annotated, Literal, get_args, get_origin
# Reassign variable to make it reexported for mypy
PYDANTIC_VERSION = P_VERSION
PYDANTIC_V2 = PYDANTIC_VERSION.startswith("2.")
sequence_annotation_to_type = {
Sequence: list,
List: list,
list: list,
Tuple: tuple,
tuple: tuple,
Set: set,
set: set,
FrozenSet: frozenset,
frozenset: frozenset,
Deque: deque,
deque: deque,
}
sequence_types = tuple(sequence_annotation_to_type.keys())
if PYDANTIC_V2:
from pydantic import PydanticSchemaGenerationError as PydanticSchemaGenerationError
from pydantic import TypeAdapter
from pydantic import ValidationError as ValidationError
from pydantic._internal._schema_generation_shared import ( # type: ignore[attr-defined]
GetJsonSchemaHandler as GetJsonSchemaHandler,
)
from pydantic._internal._typing_extra import eval_type_lenient
from pydantic._internal._utils import lenient_issubclass as lenient_issubclass
from pydantic.fields import FieldInfo
from pydantic.json_schema import GenerateJsonSchema as GenerateJsonSchema
from pydantic.json_schema import JsonSchemaValue as JsonSchemaValue
from pydantic_core import CoreSchema as CoreSchema
from pydantic_core import PydanticUndefined, PydanticUndefinedType
from pydantic_core import Url as Url
try:
from pydantic_core.core_schema import (
with_info_plain_validator_function as with_info_plain_validator_function,
)
except ImportError: # pragma: no cover
from pydantic_core.core_schema import (
general_plain_validator_function as with_info_plain_validator_function, # noqa: F401
)
Required = PydanticUndefined
Undefined = PydanticUndefined
UndefinedType = PydanticUndefinedType
evaluate_forwardref = eval_type_lenient
Validator = Any
class BaseConfig:
pass
class ErrorWrapper(Exception):
pass
@dataclass
class ModelField:
field_info: FieldInfo
name: str
mode: Literal["validation", "serialization"] = "validation"
@property
def alias(self) -> str:
a = self.field_info.alias
return a if a is not None else self.name
@property
def required(self) -> bool:
return self.field_info.is_required()
@property
def default(self) -> Any:
return self.get_default()
@property
def type_(self) -> Any:
return self.field_info.annotation
def __post_init__(self) -> None:
self._type_adapter: TypeAdapter[Any] = TypeAdapter(
Annotated[self.field_info.annotation, self.field_info]
)
def get_default(self) -> Any:
if self.field_info.is_required():
return Undefined
return self.field_info.get_default(call_default_factory=True)
def validate(
self,
value: Any,
values: Dict[str, Any] = {}, # noqa: B006
*,
loc: Tuple[Union[int, str], ...] = (),
) -> Tuple[Any, Union[List[Dict[str, Any]], None]]:
try:
return (
self._type_adapter.validate_python(value, from_attributes=True),
None,
)
except ValidationError as exc:
return None, _regenerate_error_with_loc(
errors=exc.errors(include_url=False), loc_prefix=loc
)
def serialize(
self,
value: Any,
*,
mode: Literal["json", "python"] = "json",
include: Union[IncEx, None] = None,
exclude: Union[IncEx, None] = None,
by_alias: bool = True,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
) -> Any:
# What calls this code passes a value that already called
# self._type_adapter.validate_python(value)
return self._type_adapter.dump_python(
value,
mode=mode,
include=include,
exclude=exclude,
by_alias=by_alias,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
)
def __hash__(self) -> int:
# Each ModelField is unique for our purposes, to allow making a dict from
# ModelField to its JSON Schema.
return id(self)
def get_annotation_from_field_info(
annotation: Any, field_info: FieldInfo, field_name: str
) -> Any:
return annotation
def _normalize_errors(errors: Sequence[Any]) -> List[Dict[str, Any]]:
return errors # type: ignore[return-value]
def _model_rebuild(model: Type[BaseModel]) -> None:
model.model_rebuild()
def _model_dump(
model: BaseModel, mode: Literal["json", "python"] = "json", **kwargs: Any
) -> Any:
return model.model_dump(mode=mode, **kwargs)
def _get_model_config(model: BaseModel) -> Any:
return model.model_config
def get_schema_from_model_field(
*,
field: ModelField,
schema_generator: GenerateJsonSchema,
model_name_map: ModelNameMap,
field_mapping: Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
],
separate_input_output_schemas: bool = True,
) -> Dict[str, Any]:
override_mode: Union[Literal["validation"], None] = (
None if separate_input_output_schemas else "validation"
)
# This expects that GenerateJsonSchema was already used to generate the definitions
json_schema = field_mapping[(field, override_mode or field.mode)]
if "$ref" not in json_schema:
# TODO remove when deprecating Pydantic v1
# Ref: https://github.com/pydantic/pydantic/blob/d61792cc42c80b13b23e3ffa74bc37ec7c77f7d1/pydantic/schema.py#L207
json_schema["title"] = (
field.field_info.title or field.alias.title().replace("_", " ")
)
return json_schema
def get_compat_model_name_map(fields: List[ModelField]) -> ModelNameMap:
return {}
def get_definitions(
*,
fields: List[ModelField],
schema_generator: GenerateJsonSchema,
model_name_map: ModelNameMap,
separate_input_output_schemas: bool = True,
) -> Tuple[
Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
],
Dict[str, Dict[str, Any]],
]:
override_mode: Union[Literal["validation"], None] = (
None if separate_input_output_schemas else "validation"
)
inputs = [
(field, override_mode or field.mode, field._type_adapter.core_schema)
for field in fields
]
field_mapping, definitions = schema_generator.generate_definitions(
inputs=inputs
)
return field_mapping, definitions # type: ignore[return-value]
def is_scalar_field(field: ModelField) -> bool:
from fastapi import params
return field_annotation_is_scalar(
field.field_info.annotation
) and not isinstance(field.field_info, params.Body)
def is_sequence_field(field: ModelField) -> bool:
return field_annotation_is_sequence(field.field_info.annotation)
def is_scalar_sequence_field(field: ModelField) -> bool:
return field_annotation_is_scalar_sequence(field.field_info.annotation)
def is_bytes_field(field: ModelField) -> bool:
return is_bytes_or_nonable_bytes_annotation(field.type_)
def is_bytes_sequence_field(field: ModelField) -> bool:
return is_bytes_sequence_annotation(field.type_)
def copy_field_info(*, field_info: FieldInfo, annotation: Any) -> FieldInfo:
cls = type(field_info)
merged_field_info = cls.from_annotation(annotation)
new_field_info = copy(field_info)
new_field_info.metadata = merged_field_info.metadata
new_field_info.annotation = merged_field_info.annotation
return new_field_info
def serialize_sequence_value(*, field: ModelField, value: Any) -> Sequence[Any]:
origin_type = (
get_origin(field.field_info.annotation) or field.field_info.annotation
)
assert issubclass(origin_type, sequence_types) # type: ignore[arg-type]
return sequence_annotation_to_type[origin_type](value) # type: ignore[no-any-return]
def get_missing_field_error(loc: Tuple[str, ...]) -> Dict[str, Any]:
error = ValidationError.from_exception_data(
"Field required", [{"type": "missing", "loc": loc, "input": {}}]
).errors(include_url=False)[0]
error["input"] = None
return error # type: ignore[return-value]
def create_body_model(
*, fields: Sequence[ModelField], model_name: str
) -> Type[BaseModel]:
field_params = {f.name: (f.field_info.annotation, f.field_info) for f in fields}
BodyModel: Type[BaseModel] = create_model(model_name, **field_params) # type: ignore[call-overload]
return BodyModel
def get_model_fields(model: Type[BaseModel]) -> List[ModelField]:
return [
ModelField(field_info=field_info, name=name)
for name, field_info in model.model_fields.items()
]
else:
from fastapi.openapi.constants import REF_PREFIX as REF_PREFIX
from pydantic import AnyUrl as Url # noqa: F401
from pydantic import ( # type: ignore[assignment]
BaseConfig as BaseConfig, # noqa: F401
)
from pydantic import ValidationError as ValidationError # noqa: F401
from pydantic.class_validators import ( # type: ignore[no-redef]
Validator as Validator, # noqa: F401
)
from pydantic.error_wrappers import ( # type: ignore[no-redef]
ErrorWrapper as ErrorWrapper, # noqa: F401
)
from pydantic.errors import MissingError
from pydantic.fields import ( # type: ignore[attr-defined]
SHAPE_FROZENSET,
SHAPE_LIST,
SHAPE_SEQUENCE,
SHAPE_SET,
SHAPE_SINGLETON,
SHAPE_TUPLE,
SHAPE_TUPLE_ELLIPSIS,
)
from pydantic.fields import FieldInfo as FieldInfo
from pydantic.fields import ( # type: ignore[no-redef,attr-defined]
ModelField as ModelField, # noqa: F401
)
from pydantic.fields import ( # type: ignore[no-redef,attr-defined]
Required as Required, # noqa: F401
)
from pydantic.fields import ( # type: ignore[no-redef,attr-defined]
Undefined as Undefined,
)
from pydantic.fields import ( # type: ignore[no-redef, attr-defined]
UndefinedType as UndefinedType, # noqa: F401
)
from pydantic.schema import (
field_schema,
get_flat_models_from_fields,
get_model_name_map,
model_process_schema,
)
from pydantic.schema import ( # type: ignore[no-redef] # noqa: F401
get_annotation_from_field_info as get_annotation_from_field_info,
)
from pydantic.typing import ( # type: ignore[no-redef]
evaluate_forwardref as evaluate_forwardref, # noqa: F401
)
from pydantic.utils import ( # type: ignore[no-redef]
lenient_issubclass as lenient_issubclass, # noqa: F401
)
GetJsonSchemaHandler = Any # type: ignore[assignment,misc]
JsonSchemaValue = Dict[str, Any] # type: ignore[misc]
CoreSchema = Any # type: ignore[assignment,misc]
sequence_shapes = {
SHAPE_LIST,
SHAPE_SET,
SHAPE_FROZENSET,
SHAPE_TUPLE,
SHAPE_SEQUENCE,
SHAPE_TUPLE_ELLIPSIS,
}
sequence_shape_to_type = {
SHAPE_LIST: list,
SHAPE_SET: set,
SHAPE_TUPLE: tuple,
SHAPE_SEQUENCE: list,
SHAPE_TUPLE_ELLIPSIS: list,
}
@dataclass
class GenerateJsonSchema: # type: ignore[no-redef]
ref_template: str
class PydanticSchemaGenerationError(Exception): # type: ignore[no-redef]
pass
def with_info_plain_validator_function( # type: ignore[misc]
function: Callable[..., Any],
*,
ref: Union[str, None] = None,
metadata: Any = None,
serialization: Any = None,
) -> Any:
return {}
def get_model_definitions(
*,
flat_models: Set[Union[Type[BaseModel], Type[Enum]]],
model_name_map: Dict[Union[Type[BaseModel], Type[Enum]], str],
) -> Dict[str, Any]:
definitions: Dict[str, Dict[str, Any]] = {}
for model in flat_models:
m_schema, m_definitions, m_nested_models = model_process_schema(
model, model_name_map=model_name_map, ref_prefix=REF_PREFIX
)
definitions.update(m_definitions)
model_name = model_name_map[model]
if "description" in m_schema:
m_schema["description"] = m_schema["description"].split("\f")[0]
definitions[model_name] = m_schema
return definitions
def is_pv1_scalar_field(field: ModelField) -> bool:
from fastapi import params
field_info = field.field_info
if not (
field.shape == SHAPE_SINGLETON # type: ignore[attr-defined]
and not lenient_issubclass(field.type_, BaseModel)
and not lenient_issubclass(field.type_, dict)
and not field_annotation_is_sequence(field.type_)
and not is_dataclass(field.type_)
and not isinstance(field_info, params.Body)
):
return False
if field.sub_fields: # type: ignore[attr-defined]
if not all(
is_pv1_scalar_field(f)
for f in field.sub_fields # type: ignore[attr-defined]
):
return False
return True
def is_pv1_scalar_sequence_field(field: ModelField) -> bool:
if (field.shape in sequence_shapes) and not lenient_issubclass( # type: ignore[attr-defined]
field.type_, BaseModel
):
if field.sub_fields is not None: # type: ignore[attr-defined]
for sub_field in field.sub_fields: # type: ignore[attr-defined]
if not is_pv1_scalar_field(sub_field):
return False
return True
if _annotation_is_sequence(field.type_):
return True
return False
def _normalize_errors(errors: Sequence[Any]) -> List[Dict[str, Any]]:
use_errors: List[Any] = []
for error in errors:
if isinstance(error, ErrorWrapper):
new_errors = ValidationError( # type: ignore[call-arg]
errors=[error], model=RequestErrorModel
).errors()
use_errors.extend(new_errors)
elif isinstance(error, list):
use_errors.extend(_normalize_errors(error))
else:
use_errors.append(error)
return use_errors
def _model_rebuild(model: Type[BaseModel]) -> None:
model.update_forward_refs()
def _model_dump(
model: BaseModel, mode: Literal["json", "python"] = "json", **kwargs: Any
) -> Any:
return model.dict(**kwargs)
def _get_model_config(model: BaseModel) -> Any:
return model.__config__ # type: ignore[attr-defined]
def get_schema_from_model_field(
*,
field: ModelField,
schema_generator: GenerateJsonSchema,
model_name_map: ModelNameMap,
field_mapping: Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
],
separate_input_output_schemas: bool = True,
) -> Dict[str, Any]:
# This expects that GenerateJsonSchema was already used to generate the definitions
return field_schema( # type: ignore[no-any-return]
field, model_name_map=model_name_map, ref_prefix=REF_PREFIX
)[0]
def get_compat_model_name_map(fields: List[ModelField]) -> ModelNameMap:
models = get_flat_models_from_fields(fields, known_models=set())
return get_model_name_map(models) # type: ignore[no-any-return]
def get_definitions(
*,
fields: List[ModelField],
schema_generator: GenerateJsonSchema,
model_name_map: ModelNameMap,
separate_input_output_schemas: bool = True,
) -> Tuple[
Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
],
Dict[str, Dict[str, Any]],
]:
models = get_flat_models_from_fields(fields, known_models=set())
return {}, get_model_definitions(
flat_models=models, model_name_map=model_name_map
)
def is_scalar_field(field: ModelField) -> bool:
return is_pv1_scalar_field(field)
def is_sequence_field(field: ModelField) -> bool:
return field.shape in sequence_shapes or _annotation_is_sequence(field.type_) # type: ignore[attr-defined]
def is_scalar_sequence_field(field: ModelField) -> bool:
return is_pv1_scalar_sequence_field(field)
def is_bytes_field(field: ModelField) -> bool:
return lenient_issubclass(field.type_, bytes)
def is_bytes_sequence_field(field: ModelField) -> bool:
return field.shape in sequence_shapes and lenient_issubclass(field.type_, bytes) # type: ignore[attr-defined]
def copy_field_info(*, field_info: FieldInfo, annotation: Any) -> FieldInfo:
return copy(field_info)
def serialize_sequence_value(*, field: ModelField, value: Any) -> Sequence[Any]:
return sequence_shape_to_type[field.shape](value) # type: ignore[no-any-return,attr-defined]
def get_missing_field_error(loc: Tuple[str, ...]) -> Dict[str, Any]:
missing_field_error = ErrorWrapper(MissingError(), loc=loc) # type: ignore[call-arg]
new_error = ValidationError([missing_field_error], RequestErrorModel)
return new_error.errors()[0] # type: ignore[return-value]
def create_body_model(
*, fields: Sequence[ModelField], model_name: str
) -> Type[BaseModel]:
BodyModel = create_model(model_name)
for f in fields:
BodyModel.__fields__[f.name] = f # type: ignore[index]
return BodyModel
def get_model_fields(model: Type[BaseModel]) -> List[ModelField]:
return list(model.__fields__.values()) # type: ignore[attr-defined]
def _regenerate_error_with_loc(
*, errors: Sequence[Any], loc_prefix: Tuple[Union[str, int], ...]
) -> List[Dict[str, Any]]:
updated_loc_errors: List[Any] = [
{**err, "loc": loc_prefix + err.get("loc", ())}
for err in _normalize_errors(errors)
]
return updated_loc_errors
def _annotation_is_sequence(annotation: Union[Type[Any], None]) -> bool:
if lenient_issubclass(annotation, (str, bytes)):
return False
return lenient_issubclass(annotation, sequence_types)
def field_annotation_is_sequence(annotation: Union[Type[Any], None]) -> bool:
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
for arg in get_args(annotation):
if field_annotation_is_sequence(arg):
return True
return False
return _annotation_is_sequence(annotation) or _annotation_is_sequence(
get_origin(annotation)
)
def value_is_sequence(value: Any) -> bool:
return isinstance(value, sequence_types) and not isinstance(value, (str, bytes)) # type: ignore[arg-type]
def _annotation_is_complex(annotation: Union[Type[Any], None]) -> bool:
return (
lenient_issubclass(annotation, (BaseModel, Mapping, UploadFile))
or _annotation_is_sequence(annotation)
or is_dataclass(annotation)
)
def field_annotation_is_complex(annotation: Union[Type[Any], None]) -> bool:
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
return any(field_annotation_is_complex(arg) for arg in get_args(annotation))
return (
_annotation_is_complex(annotation)
or _annotation_is_complex(origin)
or hasattr(origin, "__pydantic_core_schema__")
or hasattr(origin, "__get_pydantic_core_schema__")
)
def field_annotation_is_scalar(annotation: Any) -> bool:
# handle Ellipsis here to make tuple[int, ...] work nicely
return annotation is Ellipsis or not field_annotation_is_complex(annotation)
def field_annotation_is_scalar_sequence(annotation: Union[Type[Any], None]) -> bool:
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
at_least_one_scalar_sequence = False
for arg in get_args(annotation):
if field_annotation_is_scalar_sequence(arg):
at_least_one_scalar_sequence = True
continue
elif not field_annotation_is_scalar(arg):
return False
return at_least_one_scalar_sequence
return field_annotation_is_sequence(annotation) and all(
field_annotation_is_scalar(sub_annotation)
for sub_annotation in get_args(annotation)
)
def is_bytes_or_nonable_bytes_annotation(annotation: Any) -> bool:
if lenient_issubclass(annotation, bytes):
return True
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
for arg in get_args(annotation):
if lenient_issubclass(arg, bytes):
return True
return False
def is_uploadfile_or_nonable_uploadfile_annotation(annotation: Any) -> bool:
if lenient_issubclass(annotation, UploadFile):
return True
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
for arg in get_args(annotation):
if lenient_issubclass(arg, UploadFile):
return True
return False
def is_bytes_sequence_annotation(annotation: Any) -> bool:
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
at_least_one = False
for arg in get_args(annotation):
if is_bytes_sequence_annotation(arg):
at_least_one = True
continue
return at_least_one
return field_annotation_is_sequence(annotation) and all(
is_bytes_or_nonable_bytes_annotation(sub_annotation)
for sub_annotation in get_args(annotation)
)
def is_uploadfile_sequence_annotation(annotation: Any) -> bool:
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
at_least_one = False
for arg in get_args(annotation):
if is_uploadfile_sequence_annotation(arg):
at_least_one = True
continue
return at_least_one
return field_annotation_is_sequence(annotation) and all(
is_uploadfile_or_nonable_uploadfile_annotation(sub_annotation)
for sub_annotation in get_args(annotation)
)
@lru_cache
def get_cached_model_fields(model: Type[BaseModel]) -> List[ModelField]:
return get_model_fields(model)
|