JAMESPARK3's picture
Upload folder using huggingface_hub
1380717 verified
raw
history blame
12.6 kB
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import codecs
import decimal
from functools import partial
import itertools
import sys
import unicodedata
import numpy as np
import pyarrow as pa
KILOBYTE = 1 << 10
MEGABYTE = KILOBYTE * KILOBYTE
DEFAULT_NONE_PROB = 0.3
def _multiplicate_sequence(base, target_size):
q, r = divmod(target_size, len(base))
return [base] * q + [base[:r]]
def get_random_bytes(n, seed=42):
"""
Generate a random bytes object of size *n*.
Note the result might be compressible.
"""
rnd = np.random.RandomState(seed)
# Computing a huge random bytestring can be costly, so we get at most
# 100KB and duplicate the result as needed
base_size = 100003
q, r = divmod(n, base_size)
if q == 0:
result = rnd.bytes(r)
else:
base = rnd.bytes(base_size)
result = b''.join(_multiplicate_sequence(base, n))
assert len(result) == n
return result
def get_random_ascii(n, seed=42):
"""
Get a random ASCII-only unicode string of size *n*.
"""
arr = np.frombuffer(get_random_bytes(n, seed=seed), dtype=np.int8) & 0x7f
result, _ = codecs.ascii_decode(arr)
assert isinstance(result, str)
assert len(result) == n
return result
def _random_unicode_letters(n, seed=42):
"""
Generate a string of random unicode letters (slow).
"""
def _get_more_candidates():
return rnd.randint(0, sys.maxunicode, size=n).tolist()
rnd = np.random.RandomState(seed)
out = []
candidates = []
while len(out) < n:
if not candidates:
candidates = _get_more_candidates()
ch = chr(candidates.pop())
# XXX Do we actually care that the code points are valid?
if unicodedata.category(ch)[0] == 'L':
out.append(ch)
return out
_1024_random_unicode_letters = _random_unicode_letters(1024)
def get_random_unicode(n, seed=42):
"""
Get a random non-ASCII unicode string of size *n*.
"""
indices = np.frombuffer(get_random_bytes(n * 2, seed=seed),
dtype=np.int16) & 1023
unicode_arr = np.array(_1024_random_unicode_letters)[indices]
result = ''.join(unicode_arr.tolist())
assert len(result) == n, (len(result), len(unicode_arr))
return result
class BuiltinsGenerator(object):
def __init__(self, seed=42):
self.rnd = np.random.RandomState(seed)
def sprinkle(self, lst, prob, value):
"""
Sprinkle *value* entries in list *lst* with likelihood *prob*.
"""
for i, p in enumerate(self.rnd.random_sample(size=len(lst))):
if p < prob:
lst[i] = value
def sprinkle_nones(self, lst, prob):
"""
Sprinkle None entries in list *lst* with likelihood *prob*.
"""
self.sprinkle(lst, prob, None)
def generate_int_list(self, n, none_prob=DEFAULT_NONE_PROB):
"""
Generate a list of Python ints with *none_prob* probability of
an entry being None.
"""
data = list(range(n))
self.sprinkle_nones(data, none_prob)
return data
def generate_float_list(self, n, none_prob=DEFAULT_NONE_PROB,
use_nan=False):
"""
Generate a list of Python floats with *none_prob* probability of
an entry being None (or NaN if *use_nan* is true).
"""
# Make sure we get Python floats, not np.float64
data = list(map(float, self.rnd.uniform(0.0, 1.0, n)))
assert len(data) == n
self.sprinkle(data, none_prob, value=float('nan') if use_nan else None)
return data
def generate_bool_list(self, n, none_prob=DEFAULT_NONE_PROB):
"""
Generate a list of Python bools with *none_prob* probability of
an entry being None.
"""
# Make sure we get Python bools, not np.bool_
data = [bool(x >= 0.5) for x in self.rnd.uniform(0.0, 1.0, n)]
assert len(data) == n
self.sprinkle_nones(data, none_prob)
return data
def generate_decimal_list(self, n, none_prob=DEFAULT_NONE_PROB,
use_nan=False):
"""
Generate a list of Python Decimals with *none_prob* probability of
an entry being None (or NaN if *use_nan* is true).
"""
data = [decimal.Decimal('%.9f' % f)
for f in self.rnd.uniform(0.0, 1.0, n)]
assert len(data) == n
self.sprinkle(data, none_prob,
value=decimal.Decimal('nan') if use_nan else None)
return data
def generate_object_list(self, n, none_prob=DEFAULT_NONE_PROB):
"""
Generate a list of generic Python objects with *none_prob*
probability of an entry being None.
"""
data = [object() for i in range(n)]
self.sprinkle_nones(data, none_prob)
return data
def _generate_varying_sequences(self, random_factory, n, min_size,
max_size, none_prob):
"""
Generate a list of *n* sequences of varying size between *min_size*
and *max_size*, with *none_prob* probability of an entry being None.
The base material for each sequence is obtained by calling
`random_factory(<some size>)`
"""
base_size = 10000
base = random_factory(base_size + max_size)
data = []
for i in range(n):
off = self.rnd.randint(base_size)
if min_size == max_size:
size = min_size
else:
size = self.rnd.randint(min_size, max_size + 1)
data.append(base[off:off + size])
self.sprinkle_nones(data, none_prob)
assert len(data) == n
return data
def generate_fixed_binary_list(self, n, size, none_prob=DEFAULT_NONE_PROB):
"""
Generate a list of bytestrings with a fixed *size*.
"""
return self._generate_varying_sequences(get_random_bytes, n,
size, size, none_prob)
def generate_varying_binary_list(self, n, min_size, max_size,
none_prob=DEFAULT_NONE_PROB):
"""
Generate a list of bytestrings with a random size between
*min_size* and *max_size*.
"""
return self._generate_varying_sequences(get_random_bytes, n,
min_size, max_size, none_prob)
def generate_ascii_string_list(self, n, min_size, max_size,
none_prob=DEFAULT_NONE_PROB):
"""
Generate a list of ASCII strings with a random size between
*min_size* and *max_size*.
"""
return self._generate_varying_sequences(get_random_ascii, n,
min_size, max_size, none_prob)
def generate_unicode_string_list(self, n, min_size, max_size,
none_prob=DEFAULT_NONE_PROB):
"""
Generate a list of unicode strings with a random size between
*min_size* and *max_size*.
"""
return self._generate_varying_sequences(get_random_unicode, n,
min_size, max_size, none_prob)
def generate_int_list_list(self, n, min_size, max_size,
none_prob=DEFAULT_NONE_PROB):
"""
Generate a list of lists of Python ints with a random size between
*min_size* and *max_size*.
"""
return self._generate_varying_sequences(
partial(self.generate_int_list, none_prob=none_prob),
n, min_size, max_size, none_prob)
def generate_tuple_list(self, n, none_prob=DEFAULT_NONE_PROB):
"""
Generate a list of tuples with random values.
Each tuple has the form `(int value, float value, bool value)`
"""
dicts = self.generate_dict_list(n, none_prob=none_prob)
tuples = [(d.get('u'), d.get('v'), d.get('w'))
if d is not None else None
for d in dicts]
assert len(tuples) == n
return tuples
def generate_dict_list(self, n, none_prob=DEFAULT_NONE_PROB):
"""
Generate a list of dicts with random values.
Each dict has the form
`{'u': int value, 'v': float value, 'w': bool value}`
"""
ints = self.generate_int_list(n, none_prob=none_prob)
floats = self.generate_float_list(n, none_prob=none_prob)
bools = self.generate_bool_list(n, none_prob=none_prob)
dicts = []
# Keep half the Nones, omit the other half
keep_nones = itertools.cycle([True, False])
for u, v, w in zip(ints, floats, bools):
d = {}
if u is not None or next(keep_nones):
d['u'] = u
if v is not None or next(keep_nones):
d['v'] = v
if w is not None or next(keep_nones):
d['w'] = w
dicts.append(d)
self.sprinkle_nones(dicts, none_prob)
assert len(dicts) == n
return dicts
def get_type_and_builtins(self, n, type_name):
"""
Return a `(arrow type, list)` tuple where the arrow type
corresponds to the given logical *type_name*, and the list
is a list of *n* random-generated Python objects compatible
with the arrow type.
"""
size = None
if type_name in ('bool', 'decimal', 'ascii', 'unicode', 'int64 list'):
kind = type_name
elif type_name.startswith(('int', 'uint')):
kind = 'int'
elif type_name.startswith('float'):
kind = 'float'
elif type_name.startswith('struct'):
kind = 'struct'
elif type_name == 'binary':
kind = 'varying binary'
elif type_name.startswith('binary'):
kind = 'fixed binary'
size = int(type_name[6:])
assert size > 0
else:
raise ValueError("unrecognized type %r" % (type_name,))
if kind in ('int', 'float'):
ty = getattr(pa, type_name)()
elif kind == 'bool':
ty = pa.bool_()
elif kind == 'decimal':
ty = pa.decimal128(9, 9)
elif kind == 'fixed binary':
ty = pa.binary(size)
elif kind == 'varying binary':
ty = pa.binary()
elif kind in ('ascii', 'unicode'):
ty = pa.string()
elif kind == 'int64 list':
ty = pa.list_(pa.int64())
elif kind == 'struct':
ty = pa.struct([pa.field('u', pa.int64()),
pa.field('v', pa.float64()),
pa.field('w', pa.bool_())])
factories = {
'int': self.generate_int_list,
'float': self.generate_float_list,
'bool': self.generate_bool_list,
'decimal': self.generate_decimal_list,
'fixed binary': partial(self.generate_fixed_binary_list,
size=size),
'varying binary': partial(self.generate_varying_binary_list,
min_size=3, max_size=40),
'ascii': partial(self.generate_ascii_string_list,
min_size=3, max_size=40),
'unicode': partial(self.generate_unicode_string_list,
min_size=3, max_size=40),
'int64 list': partial(self.generate_int_list_list,
min_size=0, max_size=20),
'struct': self.generate_dict_list,
'struct from tuples': self.generate_tuple_list,
}
data = factories[kind](n)
return ty, data