Spaces:
Running
Running
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
import numpy as np | |
import pyarrow as pa | |
try: | |
import pyarrow.parquet as pq | |
except ImportError: | |
pq = None | |
from pyarrow.tests.util import rands | |
class ParquetWriteBinary(object): | |
def setup(self): | |
nuniques = 100000 | |
value_size = 50 | |
length = 1000000 | |
num_cols = 10 | |
unique_values = np.array([rands(value_size) for | |
i in range(nuniques)], dtype='O') | |
values = unique_values[np.random.randint(0, nuniques, size=length)] | |
self.table = pa.table([pa.array(values) for i in range(num_cols)], | |
names=['f{}'.format(i) for i in range(num_cols)]) | |
self.table_df = self.table.to_pandas() | |
def time_write_binary_table(self): | |
out = pa.BufferOutputStream() | |
pq.write_table(self.table, out) | |
def time_write_binary_table_uncompressed(self): | |
out = pa.BufferOutputStream() | |
pq.write_table(self.table, out, compression='none') | |
def time_write_binary_table_no_dictionary(self): | |
out = pa.BufferOutputStream() | |
pq.write_table(self.table, out, use_dictionary=False) | |
def time_convert_pandas_and_write_binary_table(self): | |
out = pa.BufferOutputStream() | |
pq.write_table(pa.table(self.table_df), out) | |
def generate_dict_strings(string_size, nunique, length, random_order=True): | |
uniques = np.array([rands(string_size) for i in range(nunique)], dtype='O') | |
if random_order: | |
indices = np.random.randint(0, nunique, size=length).astype('i4') | |
else: | |
indices = np.arange(nunique).astype('i4').repeat(length // nunique) | |
return pa.DictionaryArray.from_arrays(indices, uniques) | |
def generate_dict_table(num_cols, string_size, nunique, length, | |
random_order=True): | |
data = generate_dict_strings(string_size, nunique, length, | |
random_order=random_order) | |
return pa.table([ | |
data for i in range(num_cols) | |
], names=['f{}'.format(i) for i in range(num_cols)]) | |
class ParquetWriteDictionaries(object): | |
param_names = ('nunique',) | |
params = [(1000), (100000)] | |
def setup(self, nunique): | |
self.num_cols = 10 | |
self.value_size = 32 | |
self.nunique = nunique | |
self.length = 10000000 | |
self.table = generate_dict_table(self.num_cols, self.value_size, | |
self.nunique, self.length) | |
self.table_sequential = generate_dict_table(self.num_cols, | |
self.value_size, | |
self.nunique, self.length, | |
random_order=False) | |
def time_write_random_order(self, nunique): | |
pq.write_table(self.table, pa.BufferOutputStream()) | |
def time_write_sequential(self, nunique): | |
pq.write_table(self.table_sequential, pa.BufferOutputStream()) | |
class ParquetManyColumns(object): | |
total_cells = 10000000 | |
param_names = ('num_cols',) | |
params = [100, 1000, 10000] | |
def setup(self, num_cols): | |
num_rows = self.total_cells // num_cols | |
self.table = pa.table({'c' + str(i): np.random.randn(num_rows) | |
for i in range(num_cols)}) | |
out = pa.BufferOutputStream() | |
pq.write_table(self.table, out) | |
self.buf = out.getvalue() | |
def time_write(self, num_cols): | |
out = pa.BufferOutputStream() | |
pq.write_table(self.table, out) | |
def time_read(self, num_cols): | |
pq.read_table(self.buf) | |