Spaces:
Running
Running
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
import shutil | |
import os | |
from datetime import timedelta | |
import pyarrow as pa | |
import pyarrow.dataset as ds | |
import pyarrow.parquet.encryption as pe | |
from pyarrow.tests.parquet.encryption import InMemoryKmsClient | |
""" A sample to demonstrate parquet dataset encryption and decryption""" | |
# create a list of dictionaries that will represent our dataset | |
table = pa.table({'year': [2020, 2022, 2021, 2022, 2019, 2021], | |
'n_legs': [2, 2, 4, 4, 5, 100], | |
'animal': ["Flamingo", "Parrot", "Dog", "Horse", | |
"Brittle stars", "Centipede"]}) | |
# create a PyArrow dataset from the table | |
dataset = ds.dataset(table) | |
FOOTER_KEY = b"0123456789112345" | |
FOOTER_KEY_NAME = "footer_key" | |
COL_KEY = b"1234567890123450" | |
COL_KEY_NAME = "col_key" | |
encryption_config = pe.EncryptionConfiguration( | |
footer_key=FOOTER_KEY_NAME, | |
plaintext_footer=False, | |
# Use COL_KEY_NAME to encrypt `n_legs` and `animal` columns. | |
column_keys={ | |
COL_KEY_NAME: ["n_legs", "animal"], | |
}, | |
encryption_algorithm="AES_GCM_V1", | |
# requires timedelta or an assertion is raised | |
cache_lifetime=timedelta(minutes=5.0), | |
data_key_length_bits=256) | |
kms_connection_config = pe.KmsConnectionConfig( | |
custom_kms_conf={ | |
FOOTER_KEY_NAME: FOOTER_KEY.decode("UTF-8"), | |
COL_KEY_NAME: COL_KEY.decode("UTF-8"), | |
} | |
) | |
decryption_config = pe.DecryptionConfiguration(cache_lifetime=300) | |
def kms_factory(kms_connection_configuration): | |
return InMemoryKmsClient(kms_connection_configuration) | |
crypto_factory = pe.CryptoFactory(kms_factory) | |
parquet_encryption_cfg = ds.ParquetEncryptionConfig( | |
crypto_factory, kms_connection_config, encryption_config) | |
parquet_decryption_cfg = ds.ParquetDecryptionConfig(crypto_factory, | |
kms_connection_config, | |
decryption_config) | |
# set encryption config for parquet fragment scan options | |
pq_scan_opts = ds.ParquetFragmentScanOptions() | |
pq_scan_opts.parquet_decryption_config = parquet_decryption_cfg | |
pformat = pa.dataset.ParquetFileFormat(default_fragment_scan_options=pq_scan_opts) | |
if os.path.exists('sample_dataset'): | |
shutil.rmtree('sample_dataset') | |
write_options = pformat.make_write_options( | |
encryption_config=parquet_encryption_cfg) | |
ds.write_dataset(data=dataset, base_dir="sample_dataset", | |
partitioning=['year'], format=pformat, file_options=write_options) | |
# read the dataset back | |
dataset = ds.dataset('sample_dataset', format=pformat) | |
# print the dataset | |
print(dataset.to_table()) | |