Spaces:
Running
Running
from fontTools.ttLib.ttGlyphSet import LerpGlyphSet | |
from fontTools.pens.basePen import AbstractPen, BasePen, DecomposingPen | |
from fontTools.pens.pointPen import AbstractPointPen, SegmentToPointPen | |
from fontTools.pens.recordingPen import RecordingPen, DecomposingRecordingPen | |
from fontTools.misc.transform import Transform | |
from collections import defaultdict, deque | |
from math import sqrt, copysign, atan2, pi | |
from enum import Enum | |
import itertools | |
import logging | |
log = logging.getLogger("fontTools.varLib.interpolatable") | |
class InterpolatableProblem: | |
NOTHING = "nothing" | |
MISSING = "missing" | |
OPEN_PATH = "open_path" | |
PATH_COUNT = "path_count" | |
NODE_COUNT = "node_count" | |
NODE_INCOMPATIBILITY = "node_incompatibility" | |
CONTOUR_ORDER = "contour_order" | |
WRONG_START_POINT = "wrong_start_point" | |
KINK = "kink" | |
UNDERWEIGHT = "underweight" | |
OVERWEIGHT = "overweight" | |
severity = { | |
MISSING: 1, | |
OPEN_PATH: 2, | |
PATH_COUNT: 3, | |
NODE_COUNT: 4, | |
NODE_INCOMPATIBILITY: 5, | |
CONTOUR_ORDER: 6, | |
WRONG_START_POINT: 7, | |
KINK: 8, | |
UNDERWEIGHT: 9, | |
OVERWEIGHT: 10, | |
NOTHING: 11, | |
} | |
def sort_problems(problems): | |
"""Sort problems by severity, then by glyph name, then by problem message.""" | |
return dict( | |
sorted( | |
problems.items(), | |
key=lambda _: -min( | |
( | |
(InterpolatableProblem.severity[p["type"]] + p.get("tolerance", 0)) | |
for p in _[1] | |
), | |
), | |
reverse=True, | |
) | |
) | |
def rot_list(l, k): | |
"""Rotate list by k items forward. Ie. item at position 0 will be | |
at position k in returned list. Negative k is allowed.""" | |
return l[-k:] + l[:-k] | |
class PerContourPen(BasePen): | |
def __init__(self, Pen, glyphset=None): | |
BasePen.__init__(self, glyphset) | |
self._glyphset = glyphset | |
self._Pen = Pen | |
self._pen = None | |
self.value = [] | |
def _moveTo(self, p0): | |
self._newItem() | |
self._pen.moveTo(p0) | |
def _lineTo(self, p1): | |
self._pen.lineTo(p1) | |
def _qCurveToOne(self, p1, p2): | |
self._pen.qCurveTo(p1, p2) | |
def _curveToOne(self, p1, p2, p3): | |
self._pen.curveTo(p1, p2, p3) | |
def _closePath(self): | |
self._pen.closePath() | |
self._pen = None | |
def _endPath(self): | |
self._pen.endPath() | |
self._pen = None | |
def _newItem(self): | |
self._pen = pen = self._Pen() | |
self.value.append(pen) | |
class PerContourOrComponentPen(PerContourPen): | |
def addComponent(self, glyphName, transformation): | |
self._newItem() | |
self.value[-1].addComponent(glyphName, transformation) | |
class SimpleRecordingPointPen(AbstractPointPen): | |
def __init__(self): | |
self.value = [] | |
def beginPath(self, identifier=None, **kwargs): | |
pass | |
def endPath(self) -> None: | |
pass | |
def addPoint(self, pt, segmentType=None): | |
self.value.append((pt, False if segmentType is None else True)) | |
def vdiff_hypot2(v0, v1): | |
s = 0 | |
for x0, x1 in zip(v0, v1): | |
d = x1 - x0 | |
s += d * d | |
return s | |
def vdiff_hypot2_complex(v0, v1): | |
s = 0 | |
for x0, x1 in zip(v0, v1): | |
d = x1 - x0 | |
s += d.real * d.real + d.imag * d.imag | |
# This does the same but seems to be slower: | |
# s += (d * d.conjugate()).real | |
return s | |
def matching_cost(G, matching): | |
return sum(G[i][j] for i, j in enumerate(matching)) | |
def min_cost_perfect_bipartite_matching_scipy(G): | |
n = len(G) | |
rows, cols = linear_sum_assignment(G) | |
assert (rows == list(range(n))).all() | |
# Convert numpy array and integer to Python types, | |
# to ensure that this is JSON-serializable. | |
cols = list(int(e) for e in cols) | |
return list(cols), matching_cost(G, cols) | |
def min_cost_perfect_bipartite_matching_munkres(G): | |
n = len(G) | |
cols = [None] * n | |
for row, col in Munkres().compute(G): | |
cols[row] = col | |
return cols, matching_cost(G, cols) | |
def min_cost_perfect_bipartite_matching_bruteforce(G): | |
n = len(G) | |
if n > 6: | |
raise Exception("Install Python module 'munkres' or 'scipy >= 0.17.0'") | |
# Otherwise just brute-force | |
permutations = itertools.permutations(range(n)) | |
best = list(next(permutations)) | |
best_cost = matching_cost(G, best) | |
for p in permutations: | |
cost = matching_cost(G, p) | |
if cost < best_cost: | |
best, best_cost = list(p), cost | |
return best, best_cost | |
try: | |
from scipy.optimize import linear_sum_assignment | |
min_cost_perfect_bipartite_matching = min_cost_perfect_bipartite_matching_scipy | |
except ImportError: | |
try: | |
from munkres import Munkres | |
min_cost_perfect_bipartite_matching = ( | |
min_cost_perfect_bipartite_matching_munkres | |
) | |
except ImportError: | |
min_cost_perfect_bipartite_matching = ( | |
min_cost_perfect_bipartite_matching_bruteforce | |
) | |
def contour_vector_from_stats(stats): | |
# Don't change the order of items here. | |
# It's okay to add to the end, but otherwise, other | |
# code depends on it. Search for "covariance". | |
size = sqrt(abs(stats.area)) | |
return ( | |
copysign((size), stats.area), | |
stats.meanX, | |
stats.meanY, | |
stats.stddevX * 2, | |
stats.stddevY * 2, | |
stats.correlation * size, | |
) | |
def matching_for_vectors(m0, m1): | |
n = len(m0) | |
identity_matching = list(range(n)) | |
costs = [[vdiff_hypot2(v0, v1) for v1 in m1] for v0 in m0] | |
( | |
matching, | |
matching_cost, | |
) = min_cost_perfect_bipartite_matching(costs) | |
identity_cost = sum(costs[i][i] for i in range(n)) | |
return matching, matching_cost, identity_cost | |
def points_characteristic_bits(points): | |
bits = 0 | |
for pt, b in reversed(points): | |
bits = (bits << 1) | b | |
return bits | |
_NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR = 4 | |
def points_complex_vector(points): | |
vector = [] | |
if not points: | |
return vector | |
points = [complex(*pt) for pt, _ in points] | |
n = len(points) | |
assert _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR == 4 | |
points.extend(points[: _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR - 1]) | |
while len(points) < _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR: | |
points.extend(points[: _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR - 1]) | |
for i in range(n): | |
# The weights are magic numbers. | |
# The point itself | |
p0 = points[i] | |
vector.append(p0) | |
# The vector to the next point | |
p1 = points[i + 1] | |
d0 = p1 - p0 | |
vector.append(d0 * 3) | |
# The turn vector | |
p2 = points[i + 2] | |
d1 = p2 - p1 | |
vector.append(d1 - d0) | |
# The angle to the next point, as a cross product; | |
# Square root of, to match dimentionality of distance. | |
cross = d0.real * d1.imag - d0.imag * d1.real | |
cross = copysign(sqrt(abs(cross)), cross) | |
vector.append(cross * 4) | |
return vector | |
def add_isomorphisms(points, isomorphisms, reverse): | |
reference_bits = points_characteristic_bits(points) | |
n = len(points) | |
# if points[0][0] == points[-1][0]: | |
# abort | |
if reverse: | |
points = points[::-1] | |
bits = points_characteristic_bits(points) | |
else: | |
bits = reference_bits | |
vector = points_complex_vector(points) | |
assert len(vector) % n == 0 | |
mult = len(vector) // n | |
mask = (1 << n) - 1 | |
for i in range(n): | |
b = ((bits << (n - i)) & mask) | (bits >> i) | |
if b == reference_bits: | |
isomorphisms.append( | |
(rot_list(vector, -i * mult), n - 1 - i if reverse else i, reverse) | |
) | |
def find_parents_and_order(glyphsets, locations): | |
parents = [None] + list(range(len(glyphsets) - 1)) | |
order = list(range(len(glyphsets))) | |
if locations: | |
# Order base master first | |
bases = (i for i, l in enumerate(locations) if all(v == 0 for v in l.values())) | |
if bases: | |
base = next(bases) | |
logging.info("Base master index %s, location %s", base, locations[base]) | |
else: | |
base = 0 | |
logging.warning("No base master location found") | |
# Form a minimum spanning tree of the locations | |
try: | |
from scipy.sparse.csgraph import minimum_spanning_tree | |
graph = [[0] * len(locations) for _ in range(len(locations))] | |
axes = set() | |
for l in locations: | |
axes.update(l.keys()) | |
axes = sorted(axes) | |
vectors = [tuple(l.get(k, 0) for k in axes) for l in locations] | |
for i, j in itertools.combinations(range(len(locations)), 2): | |
graph[i][j] = vdiff_hypot2(vectors[i], vectors[j]) | |
tree = minimum_spanning_tree(graph) | |
rows, cols = tree.nonzero() | |
graph = defaultdict(set) | |
for row, col in zip(rows, cols): | |
graph[row].add(col) | |
graph[col].add(row) | |
# Traverse graph from the base and assign parents | |
parents = [None] * len(locations) | |
order = [] | |
visited = set() | |
queue = deque([base]) | |
while queue: | |
i = queue.popleft() | |
visited.add(i) | |
order.append(i) | |
for j in sorted(graph[i]): | |
if j not in visited: | |
parents[j] = i | |
queue.append(j) | |
except ImportError: | |
pass | |
log.info("Parents: %s", parents) | |
log.info("Order: %s", order) | |
return parents, order | |
def transform_from_stats(stats, inverse=False): | |
# https://cookierobotics.com/007/ | |
a = stats.varianceX | |
b = stats.covariance | |
c = stats.varianceY | |
delta = (((a - c) * 0.5) ** 2 + b * b) ** 0.5 | |
lambda1 = (a + c) * 0.5 + delta # Major eigenvalue | |
lambda2 = (a + c) * 0.5 - delta # Minor eigenvalue | |
theta = atan2(lambda1 - a, b) if b != 0 else (pi * 0.5 if a < c else 0) | |
trans = Transform() | |
if lambda2 < 0: | |
# XXX This is a hack. | |
# The problem is that the covariance matrix is singular. | |
# This happens when the contour is a line, or a circle. | |
# In that case, the covariance matrix is not a good | |
# representation of the contour. | |
# We should probably detect this earlier and avoid | |
# computing the covariance matrix in the first place. | |
# But for now, we just avoid the division by zero. | |
lambda2 = 0 | |
if inverse: | |
trans = trans.translate(-stats.meanX, -stats.meanY) | |
trans = trans.rotate(-theta) | |
trans = trans.scale(1 / sqrt(lambda1), 1 / sqrt(lambda2)) | |
else: | |
trans = trans.scale(sqrt(lambda1), sqrt(lambda2)) | |
trans = trans.rotate(theta) | |
trans = trans.translate(stats.meanX, stats.meanY) | |
return trans | |