# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np import pandas as pd import pyarrow as pa from pyarrow.tests.util import rands class PandasConversionsBase(object): def setup(self, n, dtype): if dtype == 'float64_nans': arr = np.arange(n).astype('float64') arr[arr % 10 == 0] = np.nan else: arr = np.arange(n).astype(dtype) self.data = pd.DataFrame({'column': arr}) class PandasConversionsToArrow(PandasConversionsBase): param_names = ('size', 'dtype') params = ((10, 10 ** 6), ('int64', 'float64', 'float64_nans', 'str')) def time_from_series(self, n, dtype): pa.Table.from_pandas(self.data) class PandasConversionsFromArrow(PandasConversionsBase): param_names = ('size', 'dtype') params = ((10, 10 ** 6), ('int64', 'float64', 'float64_nans', 'str')) def setup(self, n, dtype): super(PandasConversionsFromArrow, self).setup(n, dtype) self.arrow_data = pa.Table.from_pandas(self.data) def time_to_series(self, n, dtype): self.arrow_data.to_pandas() class ToPandasStrings(object): param_names = ('uniqueness', 'total') params = ((0.001, 0.01, 0.1, 0.5), (1000000,)) string_length = 25 def setup(self, uniqueness, total): nunique = int(total * uniqueness) unique_values = [rands(self.string_length) for i in range(nunique)] values = unique_values * (total // nunique) self.arr = pa.array(values, type=pa.string()) self.table = pa.Table.from_arrays([self.arr], ['f0']) def time_to_pandas_dedup(self, *args): self.arr.to_pandas() def time_to_pandas_no_dedup(self, *args): self.arr.to_pandas(deduplicate_objects=False) class SerializeDeserializePandas(object): def setup(self): # 10 million length n = 10000000 self.df = pd.DataFrame({'data': np.random.randn(n)}) self.serialized = pa.serialize_pandas(self.df) def time_serialize_pandas(self): pa.serialize_pandas(self.df) def time_deserialize_pandas(self): pa.deserialize_pandas(self.serialized) class TableFromPandasMicroperformance(object): # ARROW-4629 def setup(self): ser = pd.Series(range(10000)) df = pd.DataFrame({col: ser.copy(deep=True) for col in range(100)}) # Simulate a real dataset by converting some columns to strings self.df = df.astype({col: str for col in range(50)}) def time_Table_from_pandas(self): for _ in range(50): pa.Table.from_pandas(self.df, nthreads=1)