# The contents of this file are automatically written by # tools/generate_schema_wrapper.py. Do not modify directly. from __future__ import annotations import contextlib import copy import inspect import json import sys import textwrap from collections import defaultdict from functools import partial from importlib.metadata import version as importlib_version from itertools import chain, zip_longest from math import ceil from typing import ( TYPE_CHECKING, Any, Dict, Final, Iterable, Iterator, List, Literal, Sequence, TypeVar, Union, cast, overload, ) from typing_extensions import TypeAlias import jsonschema import jsonschema.exceptions import jsonschema.validators import narwhals.stable.v1 as nw from packaging.version import Version # This leads to circular imports with the vegalite module. Currently, this works # but be aware that when you access it in this script, the vegalite module might # not yet be fully instantiated in case your code is being executed during import time from altair import vegalite if TYPE_CHECKING: from typing import ClassVar from referencing import Registry from altair.typing import ChartType if sys.version_info >= (3, 13): from typing import TypeIs else: from typing_extensions import TypeIs if sys.version_info >= (3, 11): from typing import Never, Self else: from typing_extensions import Never, Self ValidationErrorList: TypeAlias = List[jsonschema.exceptions.ValidationError] GroupedValidationErrors: TypeAlias = Dict[str, ValidationErrorList] # This URI is arbitrary and could be anything else. It just cannot be an empty # string as we need to reference the schema registered in # the referencing.Registry. _VEGA_LITE_ROOT_URI: Final = "urn:vega-lite-schema" # Ideally, jsonschema specification would be parsed from the current Vega-Lite # schema instead of being hardcoded here as a default value. # However, due to circular imports between this module and the altair.vegalite # modules, this information is not yet available at this point as altair.vegalite # is only partially loaded. The draft version which is used is unlikely to # change often so it's ok to keep this. There is also a test which validates # that this value is always the same as in the Vega-Lite schema. _DEFAULT_JSON_SCHEMA_DRAFT_URL: Final = "http://json-schema.org/draft-07/schema#" # If DEBUG_MODE is True, then schema objects are converted to dict and # validated at creation time. This slows things down, particularly for # larger specs, but leads to much more useful tracebacks for the user. # Individual schema classes can override this by setting the # class-level _class_is_valid_at_instantiation attribute to False DEBUG_MODE: bool = True jsonschema_version_str = importlib_version("jsonschema") def enable_debug_mode() -> None: global DEBUG_MODE DEBUG_MODE = True def disable_debug_mode() -> None: global DEBUG_MODE DEBUG_MODE = False @contextlib.contextmanager def debug_mode(arg: bool) -> Iterator[None]: global DEBUG_MODE original = DEBUG_MODE DEBUG_MODE = arg try: yield finally: DEBUG_MODE = original @overload def validate_jsonschema( spec: Any, schema: dict[str, Any], rootschema: dict[str, Any] | None = ..., *, raise_error: Literal[True] = ..., ) -> Never: ... @overload def validate_jsonschema( spec: Any, schema: dict[str, Any], rootschema: dict[str, Any] | None = ..., *, raise_error: Literal[False], ) -> jsonschema.exceptions.ValidationError | None: ... def validate_jsonschema( spec, schema: dict[str, Any], rootschema: dict[str, Any] | None = None, *, raise_error: bool = True, ) -> jsonschema.exceptions.ValidationError | None: """ Validates the passed in spec against the schema in the context of the rootschema. If any errors are found, they are deduplicated and prioritized and only the most relevant errors are kept. Errors are then either raised or returned, depending on the value of `raise_error`. """ errors = _get_errors_from_spec(spec, schema, rootschema=rootschema) if errors: leaf_errors = _get_leaves_of_error_tree(errors) grouped_errors = _group_errors_by_json_path(leaf_errors) grouped_errors = _subset_to_most_specific_json_paths(grouped_errors) grouped_errors = _deduplicate_errors(grouped_errors) # Nothing special about this first error but we need to choose one # which can be raised main_error: Any = next(iter(grouped_errors.values()))[0] # All errors are then attached as a new attribute to ValidationError so that # they can be used in SchemaValidationError to craft a more helpful # error message. Setting a new attribute like this is not ideal as # it then no longer matches the type ValidationError. It would be better # to refactor this function to never raise but only return errors. main_error._all_errors = grouped_errors if raise_error: raise main_error else: return main_error else: return None def _get_errors_from_spec( spec: dict[str, Any], schema: dict[str, Any], rootschema: dict[str, Any] | None = None, ) -> ValidationErrorList: """ Uses the relevant jsonschema validator to validate the passed in spec against the schema using the rootschema to resolve references. The schema and rootschema themselves are not validated but instead considered as valid. """ # We don't use jsonschema.validate as this would validate the schema itself. # Instead, we pass the schema directly to the validator class. This is done for # two reasons: The schema comes from Vega-Lite and is not based on the user # input, therefore there is no need to validate it in the first place. Furthermore, # the "uri-reference" format checker fails for some of the references as URIs in # "$ref" are not encoded, # e.g. '#/definitions/ValueDefWithCondition' would be a valid $ref in a Vega-Lite schema but # it is not a valid URI reference due to the characters such as '<'. json_schema_draft_url = _get_json_schema_draft_url(rootschema or schema) validator_cls = jsonschema.validators.validator_for( {"$schema": json_schema_draft_url} ) validator_kwargs: dict[str, Any] = {} if hasattr(validator_cls, "FORMAT_CHECKER"): validator_kwargs["format_checker"] = validator_cls.FORMAT_CHECKER if _use_referencing_library(): schema = _prepare_references_in_schema(schema) validator_kwargs["registry"] = _get_referencing_registry( rootschema or schema, json_schema_draft_url ) else: # No resolver is necessary if the schema is already the full schema validator_kwargs["resolver"] = ( jsonschema.RefResolver.from_schema(rootschema) if rootschema is not None else None ) validator = validator_cls(schema, **validator_kwargs) errors = list(validator.iter_errors(spec)) return errors def _get_json_schema_draft_url(schema: dict[str, Any]) -> str: return schema.get("$schema", _DEFAULT_JSON_SCHEMA_DRAFT_URL) def _use_referencing_library() -> bool: """In version 4.18.0, the jsonschema package deprecated RefResolver in favor of the referencing library.""" return Version(jsonschema_version_str) >= Version("4.18") def _prepare_references_in_schema(schema: dict[str, Any]) -> dict[str, Any]: # Create a copy so that $ref is not modified in the original schema in case # that it would still reference a dictionary which might be attached to # an Altair class _schema attribute schema = copy.deepcopy(schema) def _prepare_refs(d: dict[str, Any]) -> dict[str, Any]: """ Add _VEGA_LITE_ROOT_URI in front of all $ref values. This function recursively iterates through the whole dictionary. $ref values can only be nested in dictionaries or lists as the passed in `d` dictionary comes from the Vega-Lite json schema and in json we only have arrays (-> lists in Python) and objects (-> dictionaries in Python) which we need to iterate through. """ for key, value in d.items(): if key == "$ref": d[key] = _VEGA_LITE_ROOT_URI + d[key] elif isinstance(value, dict): d[key] = _prepare_refs(value) elif isinstance(value, list): prepared_values = [] for v in value: if isinstance(v, dict): v = _prepare_refs(v) prepared_values.append(v) d[key] = prepared_values return d schema = _prepare_refs(schema) return schema # We do not annotate the return value here as the referencing library is not always # available and this function is only executed in those cases. def _get_referencing_registry( rootschema: dict[str, Any], json_schema_draft_url: str | None = None ) -> Registry: # Referencing is a dependency of newer jsonschema versions, starting with the # version that is specified in _use_referencing_library and we therefore # can expect that it is installed if the function returns True. # We ignore 'import' mypy errors which happen when the referencing library # is not installed. That's ok as in these cases this function is not called. # We also have to ignore 'unused-ignore' errors as mypy raises those in case # referencing is installed. import referencing # type: ignore[import,unused-ignore] import referencing.jsonschema # type: ignore[import,unused-ignore] if json_schema_draft_url is None: json_schema_draft_url = _get_json_schema_draft_url(rootschema) specification = referencing.jsonschema.specification_with(json_schema_draft_url) resource = specification.create_resource(rootschema) return referencing.Registry().with_resource( uri=_VEGA_LITE_ROOT_URI, resource=resource ) def _json_path(err: jsonschema.exceptions.ValidationError) -> str: """ Drop in replacement for the .json_path property of the jsonschema ValidationError class. This is not available as property for ValidationError with jsonschema<4.0.1. More info, see https://github.com/vega/altair/issues/3038. """ path = "$" for elem in err.absolute_path: if isinstance(elem, int): path += "[" + str(elem) + "]" else: path += "." + elem return path def _group_errors_by_json_path( errors: ValidationErrorList, ) -> GroupedValidationErrors: """ Groups errors by the `json_path` attribute of the jsonschema ValidationError class. This attribute contains the path to the offending element within a chart specification and can therefore be considered as an identifier of an 'issue' in the chart that needs to be fixed. """ errors_by_json_path = defaultdict(list) for err in errors: err_key = getattr(err, "json_path", _json_path(err)) errors_by_json_path[err_key].append(err) return dict(errors_by_json_path) def _get_leaves_of_error_tree( errors: ValidationErrorList, ) -> ValidationErrorList: """ For each error in `errors`, it traverses down the "error tree" that is generated by the jsonschema library to find and return all "leaf" errors. These are errors which have no further errors that caused it and so they are the most specific errors with the most specific error messages. """ leaves: ValidationErrorList = [] for err in errors: if err.context: # This means that the error `err` was caused by errors in subschemas. # The list of errors from the subschemas are available in the property # `context`. leaves.extend(_get_leaves_of_error_tree(err.context)) else: leaves.append(err) return leaves def _subset_to_most_specific_json_paths( errors_by_json_path: GroupedValidationErrors, ) -> GroupedValidationErrors: """ Removes key (json path), value (errors) pairs where the json path is fully contained in another json path. For example if `errors_by_json_path` has two keys, `$.encoding.X` and `$.encoding.X.tooltip`, then the first one will be removed and only the second one is returned. This is done under the assumption that more specific json paths give more helpful error messages to the user. """ errors_by_json_path_specific: GroupedValidationErrors = {} for json_path, errors in errors_by_json_path.items(): if not _contained_at_start_of_one_of_other_values( json_path, list(errors_by_json_path.keys()) ): errors_by_json_path_specific[json_path] = errors return errors_by_json_path_specific def _contained_at_start_of_one_of_other_values(x: str, values: Sequence[str]) -> bool: # Does not count as "contained at start of other value" if the values are # the same. These cases should be handled separately return any(value.startswith(x) for value in values if x != value) def _deduplicate_errors( grouped_errors: GroupedValidationErrors, ) -> GroupedValidationErrors: """ Some errors have very similar error messages or are just in general not helpful for a user. This function removes as many of these cases as possible and can be extended over time to handle new cases that come up. """ grouped_errors_deduplicated: GroupedValidationErrors = {} for json_path, element_errors in grouped_errors.items(): errors_by_validator = _group_errors_by_validator(element_errors) deduplication_functions = { "enum": _deduplicate_enum_errors, "additionalProperties": _deduplicate_additional_properties_errors, } deduplicated_errors: ValidationErrorList = [] for validator, errors in errors_by_validator.items(): deduplication_func = deduplication_functions.get(validator) if deduplication_func is not None: errors = deduplication_func(errors) deduplicated_errors.extend(_deduplicate_by_message(errors)) # Removes any ValidationError "'value' is a required property" as these # errors are unlikely to be the relevant ones for the user. They come from # validation against a schema definition where the output of `alt.value` # would be valid. However, if a user uses `alt.value`, the `value` keyword # is included automatically from that function and so it's unlikely # that this was what the user intended if the keyword is not present # in the first place. deduplicated_errors = [ err for err in deduplicated_errors if not _is_required_value_error(err) ] grouped_errors_deduplicated[json_path] = deduplicated_errors return grouped_errors_deduplicated def _is_required_value_error(err: jsonschema.exceptions.ValidationError) -> bool: return err.validator == "required" and err.validator_value == ["value"] def _group_errors_by_validator(errors: ValidationErrorList) -> GroupedValidationErrors: """ Groups the errors by the json schema "validator" that casued the error. For example if the error is that a value is not one of an enumeration in the json schema then the "validator" is `"enum"`, if the error is due to an unknown property that was set although no additional properties are allowed then "validator" is `"additionalProperties`, etc. """ errors_by_validator: defaultdict[str, ValidationErrorList] = defaultdict(list) for err in errors: # Ignore mypy error as err.validator as it wrongly sees err.validator # as of type Optional[Validator] instead of str which it is according # to the documentation and all tested cases errors_by_validator[err.validator].append(err) # type: ignore[index] return dict(errors_by_validator) def _deduplicate_enum_errors(errors: ValidationErrorList) -> ValidationErrorList: """ Deduplicate enum errors by removing the errors where the allowed values are a subset of another error. For example, if `enum` contains two errors and one has `validator_value` (i.e. accepted values) ["A", "B"] and the other one ["A", "B", "C"] then the first one is removed and the final `enum` list only contains the error with ["A", "B", "C"]. """ if len(errors) > 1: # Values (and therefore `validator_value`) of an enum are always arrays, # see https://json-schema.org/understanding-json-schema/reference/generic.html#enumerated-values # which is why we can use join below value_strings = [",".join(err.validator_value) for err in errors] # type: ignore longest_enums: ValidationErrorList = [] for value_str, err in zip(value_strings, errors): if not _contained_at_start_of_one_of_other_values(value_str, value_strings): longest_enums.append(err) errors = longest_enums return errors def _deduplicate_additional_properties_errors( errors: ValidationErrorList, ) -> ValidationErrorList: """ If there are multiple additional property errors it usually means that the offending element was validated against multiple schemas and its parent is a common anyOf validator. The error messages produced from these cases are usually very similar and we just take the shortest one. For example, the following 3 errors are raised for the `unknown` channel option in `alt.X("variety", unknown=2)`: - "Additional properties are not allowed ('unknown' was unexpected)" - "Additional properties are not allowed ('field', 'unknown' were unexpected)" - "Additional properties are not allowed ('field', 'type', 'unknown' were unexpected)". """ if len(errors) > 1: # Test if all parent errors are the same anyOf error and only do # the prioritization in these cases. Can't think of a chart spec where this # would not be the case but still allow for it below to not break anything. parent = errors[0].parent if ( parent is not None and parent.validator == "anyOf" # Use [1:] as don't have to check for first error as it was used # above to define `parent` and all(err.parent is parent for err in errors[1:]) ): errors = [min(errors, key=lambda x: len(x.message))] return errors def _deduplicate_by_message(errors: ValidationErrorList) -> ValidationErrorList: """Deduplicate errors by message. This keeps the original order in case it was chosen intentionally.""" return list({e.message: e for e in errors}.values()) def _subclasses(cls: type[Any]) -> Iterator[type[Any]]: """Breadth-first sequence of all classes which inherit from cls.""" seen = set() current_set = {cls} while current_set: seen |= current_set current_set = set.union(*(set(cls.__subclasses__()) for cls in current_set)) for cls in current_set - seen: yield cls def _from_array_like(obj: Iterable[Any], /) -> list[Any]: try: ser = nw.from_native(obj, strict=True, series_only=True) return ser.to_list() except TypeError: return list(obj) def _todict(obj: Any, context: dict[str, Any] | None, np_opt: Any, pd_opt: Any) -> Any: # noqa: C901 """Convert an object to a dict representation.""" if np_opt is not None: np = np_opt if isinstance(obj, np.ndarray): return [_todict(v, context, np_opt, pd_opt) for v in obj] elif isinstance(obj, np.number): return float(obj) elif isinstance(obj, np.datetime64): result = str(obj) if "T" not in result: # See https://github.com/vega/altair/issues/1027 for why this is necessary. result += "T00:00:00" return result if isinstance(obj, SchemaBase): return obj.to_dict(validate=False, context=context) elif isinstance(obj, (list, tuple)): return [_todict(v, context, np_opt, pd_opt) for v in obj] elif isinstance(obj, dict): return { k: _todict(v, context, np_opt, pd_opt) for k, v in obj.items() if v is not Undefined } elif ( hasattr(obj, "to_dict") and (module_name := obj.__module__) and module_name.startswith("altair") ): return obj.to_dict() elif pd_opt is not None and isinstance(obj, pd_opt.Timestamp): return pd_opt.Timestamp(obj).isoformat() elif _is_iterable(obj, exclude=(str, bytes)): return _todict(_from_array_like(obj), context, np_opt, pd_opt) else: return obj def _resolve_references( schema: dict[str, Any], rootschema: dict[str, Any] | None = None ) -> dict[str, Any]: """Resolve schema references until there is no $ref anymore in the top-level of the dictionary.""" if _use_referencing_library(): registry = _get_referencing_registry(rootschema or schema) # Using a different variable name to show that this is not the # jsonschema.RefResolver but instead a Resolver from the referencing # library referencing_resolver = registry.resolver() while "$ref" in schema: schema = referencing_resolver.lookup( _VEGA_LITE_ROOT_URI + schema["$ref"] ).contents else: resolver = jsonschema.RefResolver.from_schema(rootschema or schema) while "$ref" in schema: with resolver.resolving(schema["$ref"]) as resolved: schema = resolved return schema class SchemaValidationError(jsonschema.ValidationError): """A wrapper for jsonschema.ValidationError with friendlier traceback.""" def __init__(self, obj: SchemaBase, err: jsonschema.ValidationError) -> None: super().__init__(**err._contents()) self.obj = obj self._errors: GroupedValidationErrors = getattr( err, "_all_errors", {getattr(err, "json_path", _json_path(err)): [err]} ) # This is the message from err self._original_message = self.message self.message = self._get_message() def __str__(self) -> str: return self.message def _get_message(self) -> str: def indent_second_line_onwards(message: str, indent: int = 4) -> str: modified_lines: list[str] = [] for idx, line in enumerate(message.split("\n")): if idx > 0 and len(line) > 0: line = " " * indent + line modified_lines.append(line) return "\n".join(modified_lines) error_messages: list[str] = [] # Only show a maximum of 3 errors as else the final message returned by this # method could get very long. for errors in list(self._errors.values())[:3]: error_messages.append(self._get_message_for_errors_group(errors)) message = "" if len(error_messages) > 1: error_messages = [ indent_second_line_onwards(f"Error {error_id}: {m}") for error_id, m in enumerate(error_messages, start=1) ] message += "Multiple errors were found.\n\n" message += "\n\n".join(error_messages) return message def _get_message_for_errors_group( self, errors: ValidationErrorList, ) -> str: if errors[0].validator == "additionalProperties": # During development, we only found cases where an additionalProperties # error was raised if that was the only error for the offending instance # as identifiable by the json path. Therefore, we just check here the first # error. However, other constellations might exist in which case # this should be adapted so that other error messages are shown as well. message = self._get_additional_properties_error_message(errors[0]) else: message = self._get_default_error_message(errors=errors) return message.strip() def _get_additional_properties_error_message( self, error: jsonschema.exceptions.ValidationError, ) -> str: """Output all existing parameters when an unknown parameter is specified.""" altair_cls = self._get_altair_class_for_error(error) param_dict_keys = inspect.signature(altair_cls).parameters.keys() param_names_table = self._format_params_as_table(param_dict_keys) # Error messages for these errors look like this: # "Additional properties are not allowed ('unknown' was unexpected)" # Line below extracts "unknown" from this string parameter_name = error.message.split("('")[-1].split("'")[0] message = f"""\ `{altair_cls.__name__}` has no parameter named '{parameter_name}' Existing parameter names are: {param_names_table} See the help for `{altair_cls.__name__}` to read the full description of these parameters""" return message def _get_altair_class_for_error( self, error: jsonschema.exceptions.ValidationError ) -> type[SchemaBase]: """ Try to get the lowest class possible in the chart hierarchy so it can be displayed in the error message. This should lead to more informative error messages pointing the user closer to the source of the issue. """ for prop_name in reversed(error.absolute_path): # Check if str as e.g. first item can be a 0 if isinstance(prop_name, str): potential_class_name = prop_name[0].upper() + prop_name[1:] cls = getattr(vegalite, potential_class_name, None) if cls is not None: break else: # Did not find a suitable class based on traversing the path so we fall # back on the class of the top-level object which created # the SchemaValidationError cls = self.obj.__class__ return cls @staticmethod def _format_params_as_table(param_dict_keys: Iterable[str]) -> str: """Format param names into a table so that they are easier to read.""" param_names: tuple[str, ...] name_lengths: tuple[int, ...] param_names, name_lengths = zip( *[ (name, len(name)) for name in param_dict_keys if name not in {"kwds", "self"} ] ) # Worst case scenario with the same longest param name in the same # row for all columns max_name_length = max(name_lengths) max_column_width = 80 # Output a square table if not too big (since it is easier to read) num_param_names = len(param_names) square_columns = int(ceil(num_param_names**0.5)) columns = min(max_column_width // max_name_length, square_columns) # Compute roughly equal column heights to evenly divide the param names def split_into_equal_parts(n: int, p: int) -> list[int]: return [n // p + 1] * (n % p) + [n // p] * (p - n % p) column_heights = split_into_equal_parts(num_param_names, columns) # Section the param names into columns and compute their widths param_names_columns: list[tuple[str, ...]] = [] column_max_widths: list[int] = [] last_end_idx: int = 0 for ch in column_heights: param_names_columns.append(param_names[last_end_idx : last_end_idx + ch]) column_max_widths.append( max(len(param_name) for param_name in param_names_columns[-1]) ) last_end_idx = ch + last_end_idx # Transpose the param name columns into rows to facilitate looping param_names_rows: list[tuple[str, ...]] = [] for li in zip_longest(*param_names_columns, fillvalue=""): param_names_rows.append(li) # Build the table as a string by iterating over and formatting the rows param_names_table: str = "" for param_names_row in param_names_rows: for num, param_name in enumerate(param_names_row): # Set column width based on the longest param in the column max_name_length_column = column_max_widths[num] column_pad = 3 param_names_table += "{:<{}}".format( param_name, max_name_length_column + column_pad ) # Insert newlines and spacing after the last element in each row if num == (len(param_names_row) - 1): param_names_table += "\n" return param_names_table def _get_default_error_message( self, errors: ValidationErrorList, ) -> str: bullet_points: list[str] = [] errors_by_validator = _group_errors_by_validator(errors) if "enum" in errors_by_validator: for error in errors_by_validator["enum"]: bullet_points.append(f"one of {error.validator_value}") if "type" in errors_by_validator: types = [f"'{err.validator_value}'" for err in errors_by_validator["type"]] point = "of type " if len(types) == 1: point += types[0] elif len(types) == 2: point += f"{types[0]} or {types[1]}" else: point += ", ".join(types[:-1]) + f", or {types[-1]}" bullet_points.append(point) # It should not matter which error is specifically used as they are all # about the same offending instance (i.e. invalid value), so we can just # take the first one error = errors[0] # Add a summary line when parameters are passed an invalid value # For example: "'asdf' is an invalid value for `stack` message = f"'{error.instance}' is an invalid value" if error.absolute_path: message += f" for `{error.absolute_path[-1]}`" # Add bullet points if len(bullet_points) == 0: message += ".\n\n" elif len(bullet_points) == 1: message += f". Valid values are {bullet_points[0]}.\n\n" else: # We don't use .capitalize below to make the first letter uppercase # as that makes the rest of the message lowercase bullet_points = [point[0].upper() + point[1:] for point in bullet_points] message += ". Valid values are:\n\n" message += "\n".join([f"- {point}" for point in bullet_points]) message += "\n\n" # Add unformatted messages of any remaining errors which were not # considered so far. This is not expected to be used but more exists # as a fallback for cases which were not known during development. it = ( "\n".join(e.message for e in errors) for validator, errors in errors_by_validator.items() if validator not in {"enum", "type"} ) message += "".join(it) return message class UndefinedType: """A singleton object for marking undefined parameters.""" __instance = None def __new__(cls, *args, **kwargs) -> Self: if not isinstance(cls.__instance, cls): cls.__instance = object.__new__(cls, *args, **kwargs) return cls.__instance def __repr__(self) -> str: return "Undefined" Undefined = UndefinedType() T = TypeVar("T") Optional: TypeAlias = Union[T, UndefinedType] """One of ``T`` specified type(s), or the ``Undefined`` singleton. Examples -------- The parameters ``short``, ``long`` accept the same range of types:: # ruff: noqa: UP006, UP007 from altair.typing import Optional def func_1( short: Optional[str | bool | float | dict[str, Any] | SchemaBase] = Undefined, long: Union[ str, bool, float, Dict[str, Any], SchemaBase, UndefinedType ] = Undefined, ): ... This is distinct from `typing.Optional `__. ``altair.typing.Optional`` treats ``None`` like any other type:: # ruff: noqa: UP006, UP007 from altair.typing import Optional def func_2( short: Optional[str | float | dict[str, Any] | None | SchemaBase] = Undefined, long: Union[ str, float, Dict[str, Any], None, SchemaBase, UndefinedType ] = Undefined, ): ... """ def is_undefined(obj: Any) -> TypeIs[UndefinedType]: """ Type-safe singleton check for `UndefinedType`. Notes ----- - Using `obj is Undefined` does not narrow from `UndefinedType` in a union. - Due to the assumption that other `UndefinedType`'s could exist. - Current [typing spec advises](https://typing.readthedocs.io/en/latest/spec/concepts.html#support-for-singleton-types-in-unions) using an `Enum`. - Otherwise, requires an explicit guard to inform the type checker. """ return obj is Undefined @overload def _shallow_copy(obj: _CopyImpl) -> _CopyImpl: ... @overload def _shallow_copy(obj: Any) -> Any: ... def _shallow_copy(obj: _CopyImpl | Any) -> _CopyImpl | Any: if isinstance(obj, SchemaBase): return obj.copy(deep=False) elif isinstance(obj, (list, dict)): return obj.copy() else: return obj @overload def _deep_copy(obj: _CopyImpl, by_ref: set[str]) -> _CopyImpl: ... @overload def _deep_copy(obj: Any, by_ref: set[str]) -> Any: ... def _deep_copy(obj: _CopyImpl | Any, by_ref: set[str]) -> _CopyImpl | Any: copy = partial(_deep_copy, by_ref=by_ref) if isinstance(obj, SchemaBase): if copier := getattr(obj, "__deepcopy__", None): with debug_mode(False): return copier(obj) args = (copy(arg) for arg in obj._args) kwds = {k: (copy(v) if k not in by_ref else v) for k, v in obj._kwds.items()} with debug_mode(False): return obj.__class__(*args, **kwds) elif isinstance(obj, list): return [copy(v) for v in obj] elif isinstance(obj, dict): return {k: (copy(v) if k not in by_ref else v) for k, v in obj.items()} else: return obj class SchemaBase: """ Base class for schema wrappers. Each derived class should set the _schema class attribute (and optionally the _rootschema class attribute) which is used for validation. """ _schema: ClassVar[dict[str, Any] | Any] = None _rootschema: ClassVar[dict[str, Any] | None] = None _class_is_valid_at_instantiation: ClassVar[bool] = True def __init__(self, *args: Any, **kwds: Any) -> None: # Two valid options for initialization, which should be handled by # derived classes: # - a single arg with no kwds, for, e.g. {'type': 'string'} # - zero args with zero or more kwds for {'type': 'object'} if self._schema is None: msg = ( f"Cannot instantiate object of type {self.__class__}: " "_schema class attribute is not defined." "" ) raise ValueError(msg) if kwds: assert len(args) == 0 else: assert len(args) in {0, 1} # use object.__setattr__ because we override setattr below. object.__setattr__(self, "_args", args) object.__setattr__(self, "_kwds", kwds) if DEBUG_MODE and self._class_is_valid_at_instantiation: self.to_dict(validate=True) def copy( self, deep: bool | Iterable[Any] = True, ignore: list[str] | None = None ) -> Self: """ Return a copy of the object. Parameters ---------- deep : boolean or list, optional If True (default) then return a deep copy of all dict, list, and SchemaBase objects within the object structure. If False, then only copy the top object. If a list or iterable, then only copy the listed attributes. ignore : list, optional A list of keys for which the contents should not be copied, but only stored by reference. """ if deep is True: return cast("Self", _deep_copy(self, set(ignore) if ignore else set())) with debug_mode(False): copy = self.__class__(*self._args, **self._kwds) if _is_iterable(deep): for attr in deep: copy[attr] = _shallow_copy(copy._get(attr)) return copy def _get(self, attr, default=Undefined): """Get an attribute, returning default if not present.""" attr = self._kwds.get(attr, Undefined) if attr is Undefined: attr = default return attr def __getattr__(self, attr): # reminder: getattr is called after the normal lookups if attr == "_kwds": raise AttributeError() if attr in self._kwds: return self._kwds[attr] else: try: _getattr = super().__getattr__ # pyright: ignore[reportAttributeAccessIssue] except AttributeError: _getattr = super().__getattribute__ return _getattr(attr) def __setattr__(self, item, val) -> None: self._kwds[item] = val def __getitem__(self, item): return self._kwds[item] def __setitem__(self, item, val) -> None: self._kwds[item] = val def __repr__(self) -> str: name = type(self).__name__ if kwds := self._kwds: it = (f"{k}: {v!r}" for k, v in sorted(kwds.items()) if v is not Undefined) args = ",\n".join(it).replace("\n", "\n ") LB, RB = "{", "}" return f"{name}({LB}\n {args}\n{RB})" else: return f"{name}({self._args[0]!r})" def __eq__(self, other: Any) -> bool: return ( type(self) is type(other) and self._args == other._args and self._kwds == other._kwds ) def to_dict( self, validate: bool = True, *, ignore: list[str] | None = None, context: dict[str, Any] | None = None, ) -> dict[str, Any]: """ Return a dictionary representation of the object. Parameters ---------- validate : bool, optional If True (default), then validate the output dictionary against the schema. ignore : list[str], optional A list of keys to ignore. It is usually not needed to specify this argument as a user. context : dict[str, Any], optional A context dictionary. It is usually not needed to specify this argument as a user. Notes ----- Technical: The ignore parameter will *not* be passed to child to_dict function calls. Returns ------- dict The dictionary representation of this object Raises ------ SchemaValidationError : if validate=True and the dict does not conform to the schema """ if context is None: context = {} if ignore is None: ignore = [] # The following return the package only if it has already been # imported - otherwise they return None. This is useful for # isinstance checks - for example, if pandas has not been imported, # then an object is definitely not a `pandas.Timestamp`. pd_opt = sys.modules.get("pandas") np_opt = sys.modules.get("numpy") if self._args and not self._kwds: result = _todict( self._args[0], context=context, np_opt=np_opt, pd_opt=pd_opt ) elif not self._args: kwds = self._kwds.copy() # parsed_shorthand is added by FieldChannelMixin. # It's used below to replace shorthand with its long form equivalent # parsed_shorthand is removed from context if it exists so that it is # not passed to child to_dict function calls parsed_shorthand = context.pop("parsed_shorthand", {}) # Prevent that pandas categorical data is automatically sorted # when a non-ordinal data type is specifed manually # or if the encoding channel does not support sorting if "sort" in parsed_shorthand and ( "sort" not in kwds or kwds["type"] not in {"ordinal", Undefined} ): parsed_shorthand.pop("sort") kwds.update( { k: v for k, v in parsed_shorthand.items() if kwds.get(k, Undefined) is Undefined } ) kwds = { k: v for k, v in kwds.items() if k not in {*list(ignore), "shorthand"} } if "mark" in kwds and isinstance(kwds["mark"], str): kwds["mark"] = {"type": kwds["mark"]} result = _todict(kwds, context=context, np_opt=np_opt, pd_opt=pd_opt) else: msg = ( f"{self.__class__} instance has both a value and properties : " "cannot serialize to dict" ) raise ValueError(msg) if validate: try: self.validate(result) except jsonschema.ValidationError as err: # We do not raise `from err` as else the resulting # traceback is very long as it contains part # of the Vega-Lite schema. It would also first # show the less helpful ValidationError instead of # the more user friendly SchemaValidationError raise SchemaValidationError(self, err) from None return result def to_json( self, validate: bool = True, indent: int | str | None = 2, sort_keys: bool = True, *, ignore: list[str] | None = None, context: dict[str, Any] | None = None, **kwargs, ) -> str: """ Emit the JSON representation for this object as a string. Parameters ---------- validate : bool, optional If True (default), then validate the output dictionary against the schema. indent : int, optional The number of spaces of indentation to use. The default is 2. sort_keys : bool, optional If True (default), sort keys in the output. ignore : list[str], optional A list of keys to ignore. It is usually not needed to specify this argument as a user. context : dict[str, Any], optional A context dictionary. It is usually not needed to specify this argument as a user. **kwargs Additional keyword arguments are passed to ``json.dumps()`` Notes ----- Technical: The ignore parameter will *not* be passed to child to_dict function calls. Returns ------- str The JSON specification of the chart object. """ if ignore is None: ignore = [] if context is None: context = {} dct = self.to_dict(validate=validate, ignore=ignore, context=context) return json.dumps(dct, indent=indent, sort_keys=sort_keys, **kwargs) @classmethod def _default_wrapper_classes(cls) -> Iterator[type[SchemaBase]]: """Return the set of classes used within cls.from_dict().""" return _subclasses(SchemaBase) @classmethod def from_dict( cls: type[TSchemaBase], dct: dict[str, Any], validate: bool = True ) -> TSchemaBase: """ Construct class from a dictionary representation. Parameters ---------- dct : dictionary The dict from which to construct the class validate : boolean If True (default), then validate the input against the schema. Returns ------- obj : Schema object The wrapped schema Raises ------ jsonschema.ValidationError : if validate=True and dct does not conform to the schema """ if validate: cls.validate(dct) converter = _FromDict(cls._default_wrapper_classes()) return converter.from_dict(dct, cls) @classmethod def from_json( cls, json_string: str, validate: bool = True, **kwargs: Any, # Type hints for this method would get rather complicated # if we want to provide a more specific return type ) -> ChartType: """ Instantiate the object from a valid JSON string. Parameters ---------- json_string : string The string containing a valid JSON chart specification. validate : boolean If True (default), then validate the input against the schema. **kwargs : Additional keyword arguments are passed to json.loads Returns ------- chart : Chart object The altair Chart object built from the specification. """ dct: dict[str, Any] = json.loads(json_string, **kwargs) return cls.from_dict(dct, validate=validate) # type: ignore[return-value] @classmethod def validate( cls, instance: dict[str, Any], schema: dict[str, Any] | None = None ) -> None: """Validate the instance against the class schema in the context of the rootschema.""" if schema is None: schema = cls._schema # For the benefit of mypy assert schema is not None validate_jsonschema(instance, schema, rootschema=cls._rootschema or cls._schema) @classmethod def resolve_references(cls, schema: dict[str, Any] | None = None) -> dict[str, Any]: """Resolve references in the context of this object's schema or root schema.""" schema_to_pass = schema or cls._schema # For the benefit of mypy assert schema_to_pass is not None return _resolve_references( schema=schema_to_pass, rootschema=(cls._rootschema or cls._schema or schema), ) @classmethod def validate_property( cls, name: str, value: Any, schema: dict[str, Any] | None = None ) -> None: """Validate a property against property schema in the context of the rootschema.""" # The following return the package only if it has already been # imported - otherwise they return None. This is useful for # isinstance checks - for example, if pandas has not been imported, # then an object is definitely not a `pandas.Timestamp`. pd_opt = sys.modules.get("pandas") np_opt = sys.modules.get("numpy") value = _todict(value, context={}, np_opt=np_opt, pd_opt=pd_opt) props = cls.resolve_references(schema or cls._schema).get("properties", {}) validate_jsonschema( value, props.get(name, {}), rootschema=cls._rootschema or cls._schema ) def __dir__(self) -> list[str]: return sorted(chain(super().__dir__(), self._kwds)) TSchemaBase = TypeVar("TSchemaBase", bound=SchemaBase) _CopyImpl = TypeVar("_CopyImpl", SchemaBase, Dict[Any, Any], List[Any]) """ Types which have an implementation in ``SchemaBase.copy()``. All other types are returned **by reference**. """ def _is_dict(obj: Any | dict[Any, Any]) -> TypeIs[dict[Any, Any]]: return isinstance(obj, dict) def _is_list(obj: Any | list[Any]) -> TypeIs[list[Any]]: return isinstance(obj, list) def _is_iterable( obj: Any, *, exclude: type | tuple[type, ...] = (str, bytes) ) -> TypeIs[Iterable[Any]]: return not isinstance(obj, exclude) and isinstance(obj, Iterable) def _passthrough(*args: Any, **kwds: Any) -> Any | dict[str, Any]: return args[0] if args else kwds class _FromDict: """ Class used to construct SchemaBase class hierarchies from a dict. The primary purpose of using this class is to be able to build a hash table that maps schemas to their wrapper classes. The candidate classes are specified in the ``wrapper_classes`` positional-only argument to the constructor. """ _hash_exclude_keys = ("definitions", "title", "description", "$schema", "id") def __init__(self, wrapper_classes: Iterable[type[SchemaBase]], /) -> None: # Create a mapping of a schema hash to a list of matching classes # This lets us quickly determine the correct class to construct self.class_dict: dict[int, list[type[SchemaBase]]] = defaultdict(list) for tp in wrapper_classes: if tp._schema is not None: self.class_dict[self.hash_schema(tp._schema)].append(tp) @classmethod def hash_schema(cls, schema: dict[str, Any], use_json: bool = True) -> int: """ Compute a python hash for a nested dictionary which properly handles dicts, lists, sets, and tuples. At the top level, the function excludes from the hashed schema all keys listed in `exclude_keys`. This implements two methods: one based on conversion to JSON, and one based on recursive conversions of unhashable to hashable types; the former seems to be slightly faster in several benchmarks. """ if cls._hash_exclude_keys and isinstance(schema, dict): schema = { key: val for key, val in schema.items() if key not in cls._hash_exclude_keys } if use_json: s = json.dumps(schema, sort_keys=True) return hash(s) else: def _freeze(val): if isinstance(val, dict): return frozenset((k, _freeze(v)) for k, v in val.items()) elif isinstance(val, set): return frozenset(map(_freeze, val)) elif isinstance(val, (list, tuple)): return tuple(map(_freeze, val)) else: return val return hash(_freeze(schema)) @overload def from_dict( self, dct: TSchemaBase, tp: None = ..., schema: None = ..., rootschema: None = ..., default_class: Any = ..., ) -> TSchemaBase: ... @overload def from_dict( self, dct: dict[str, Any] | list[dict[str, Any]], tp: Any = ..., schema: Any = ..., rootschema: Any = ..., default_class: type[TSchemaBase] = ..., # pyright: ignore[reportInvalidTypeVarUse] ) -> TSchemaBase: ... @overload def from_dict( self, dct: dict[str, Any], tp: None = ..., schema: dict[str, Any] = ..., rootschema: None = ..., default_class: Any = ..., ) -> SchemaBase: ... @overload def from_dict( self, dct: dict[str, Any], tp: type[TSchemaBase], schema: None = ..., rootschema: None = ..., default_class: Any = ..., ) -> TSchemaBase: ... @overload def from_dict( self, dct: dict[str, Any] | list[dict[str, Any]], tp: type[TSchemaBase], schema: dict[str, Any], rootschema: dict[str, Any] | None = ..., default_class: Any = ..., ) -> Never: ... def from_dict( self, dct: dict[str, Any] | list[dict[str, Any]] | TSchemaBase, tp: type[TSchemaBase] | None = None, schema: dict[str, Any] | None = None, rootschema: dict[str, Any] | None = None, default_class: Any = _passthrough, ) -> TSchemaBase | SchemaBase: """Construct an object from a dict representation.""" target_tp: Any current_schema: dict[str, Any] if isinstance(dct, SchemaBase): return dct elif tp is not None: current_schema = tp._schema root_schema: dict[str, Any] = rootschema or tp._rootschema or current_schema target_tp = tp elif schema is not None: # If there are multiple matches, we use the first one in the dict. # Our class dict is constructed breadth-first from top to bottom, # so the first class that matches is the most general match. current_schema = schema root_schema = rootschema or current_schema matches = self.class_dict[self.hash_schema(current_schema)] target_tp = matches[0] if matches else default_class else: msg = "Must provide either `tp` or `schema`, but not both." raise ValueError(msg) from_dict = partial(self.from_dict, rootschema=root_schema) # Can also return a list? resolved = _resolve_references(current_schema, root_schema) if "anyOf" in resolved or "oneOf" in resolved: schemas = resolved.get("anyOf", []) + resolved.get("oneOf", []) for possible in schemas: try: validate_jsonschema(dct, possible, rootschema=root_schema) except jsonschema.ValidationError: continue else: return from_dict(dct, schema=possible, default_class=target_tp) if _is_dict(dct): # TODO: handle schemas for additionalProperties/patternProperties props: dict[str, Any] = resolved.get("properties", {}) kwds = { k: (from_dict(v, schema=props[k]) if k in props else v) for k, v in dct.items() } return target_tp(**kwds) elif _is_list(dct): item_schema: dict[str, Any] = resolved.get("items", {}) return target_tp([from_dict(k, schema=item_schema) for k in dct]) else: # NOTE: Unsure what is valid here return target_tp(dct) class _PropertySetter: def __init__(self, prop: str, schema: dict[str, Any]) -> None: self.prop = prop self.schema = schema def __get__(self, obj, cls): self.obj = obj self.cls = cls # The docs from the encoding class parameter (e.g. `bin` in X, Color, # etc); this provides a general description of the parameter. self.__doc__ = self.schema["description"].replace("__", "**") property_name = f"{self.prop}"[0].upper() + f"{self.prop}"[1:] if hasattr(vegalite, property_name): altair_prop = getattr(vegalite, property_name) # Add the docstring from the helper class (e.g. `BinParams`) so # that all the parameter names of the helper class are included in # the final docstring parameter_index = altair_prop.__doc__.find("Parameters\n") if parameter_index > -1: self.__doc__ = ( altair_prop.__doc__[:parameter_index].replace(" ", "") + self.__doc__ + textwrap.dedent( f"\n\n {altair_prop.__doc__[parameter_index:]}" ) ) # For short docstrings such as Aggregate, Stack, et else: self.__doc__ = ( altair_prop.__doc__.replace(" ", "") + "\n" + self.__doc__ ) # Add signatures and tab completion for the method and parameter names self.__signature__ = inspect.signature(altair_prop) self.__wrapped__ = inspect.getfullargspec(altair_prop) self.__name__ = altair_prop.__name__ else: # It seems like bandPosition is the only parameter that doesn't # have a helper class. pass return self def __call__(self, *args: Any, **kwargs: Any): obj = self.obj.copy() # TODO: use schema to validate obj[self.prop] = args[0] if args else kwargs return obj def with_property_setters(cls: type[TSchemaBase]) -> type[TSchemaBase]: """Decorator to add property setters to a Schema class.""" schema = cls.resolve_references() for prop, propschema in schema.get("properties", {}).items(): setattr(cls, prop, _PropertySetter(prop, propschema)) return cls