from __future__ import annotations from typing import TYPE_CHECKING, Any import numpy as np if TYPE_CHECKING: from contourpy._contourpy import CoordinateArray def simple( shape: tuple[int, int], want_mask: bool = False, ) -> tuple[CoordinateArray, CoordinateArray, CoordinateArray | np.ma.MaskedArray[Any, Any]]: """Return simple test data consisting of the sum of two gaussians. Args: shape (tuple(int, int)): 2D shape of data to return. want_mask (bool, optional): Whether test data should be masked or not, default ``False``. Return: Tuple of 3 arrays: ``x``, ``y``, ``z`` test data, ``z`` will be masked if ``want_mask=True``. """ ny, nx = shape x = np.arange(nx, dtype=np.float64) y = np.arange(ny, dtype=np.float64) x, y = np.meshgrid(x, y) xscale = nx - 1.0 yscale = ny - 1.0 # z is sum of 2D gaussians. amp = np.asarray([1.0, -1.0, 0.8, -0.9, 0.7]) mid = np.asarray([[0.4, 0.2], [0.3, 0.8], [0.9, 0.75], [0.7, 0.3], [0.05, 0.7]]) width = np.asarray([0.4, 0.2, 0.2, 0.2, 0.1]) z = np.zeros_like(x) for i in range(len(amp)): z += amp[i]*np.exp(-((x/xscale - mid[i, 0])**2 + (y/yscale - mid[i, 1])**2) / width[i]**2) if want_mask: mask = np.logical_or( ((x/xscale - 1.0)**2 / 0.2 + (y/yscale - 0.0)**2 / 0.1) < 1.0, ((x/xscale - 0.2)**2 / 0.02 + (y/yscale - 0.45)**2 / 0.08) < 1.0, ) z = np.ma.array(z, mask=mask) # type: ignore[no-untyped-call] return x, y, z def random( shape: tuple[int, int], seed: int = 2187, mask_fraction: float = 0.0, ) -> tuple[CoordinateArray, CoordinateArray, CoordinateArray | np.ma.MaskedArray[Any, Any]]: """Return random test data in the range 0 to 1. Args: shape (tuple(int, int)): 2D shape of data to return. seed (int, optional): Seed for random number generator, default 2187. mask_fraction (float, optional): Fraction of elements to mask, default 0. Return: Tuple of 3 arrays: ``x``, ``y``, ``z`` test data, ``z`` will be masked if ``mask_fraction`` is greater than zero. """ ny, nx = shape x = np.arange(nx, dtype=np.float64) y = np.arange(ny, dtype=np.float64) x, y = np.meshgrid(x, y) rng = np.random.default_rng(seed) z = rng.uniform(size=shape) if mask_fraction > 0.0: mask_fraction = min(mask_fraction, 0.99) mask = rng.uniform(size=shape) < mask_fraction z = np.ma.array(z, mask=mask) # type: ignore[no-untyped-call] return x, y, z