JBHF's picture
Update app.py
63b25fa verified
raw
history blame
26.6 kB
# NonToxicGlazeAdvisor_Chat_with_Docs_Groq_Edition_1 - app.py - 04-04-2024
# STREAMLIT:
# https://www.datacamp.com/tutorial/streamlit:
#
# st.title(): This function allows you to add the title of the app.
# st.header(): This function is used to set header of a section.
# st.markdown(): This function is used to set a markdown of a section.
# st.subheader(): This function is used to set sub-header of a section.
# st.caption(): This function is used to write caption.
# st.code(): This function is used to set a code.
# st.latex(): This function is used to display mathematical expressions formatted as LaTeX.
#
# st.title ("this is the app title")
# st.header("this is the header ")
# st.markdown("this is the markdown")
# st.subheader("this is the subheader")
# st.caption("this is the caption")
# st.code("x=2021")
# st.latex(r''' a+a r^1+a r^2+a r^3 ''')
# ========================================================================
# TABS
# 03-04-2024
import streamlit as st
tab1, tab2, tab3 = st.tabs(["AI Adviseur voor niet-giftige glazuren", "Uitleg", "Voorbeeld vragen"])
#with tab1:
# st.header("A cat")
# st.image("https://static.streamlit.io/examples/cat.jpg", width=200)
with tab2:
st.header("Uitleg")
st.image("De fritte oven - een schets van het proces.jpg", width=200)
with tab3:
st.header("Voorbeeld vragen")
st.write("De fritte oven - een schets van het proces:")
st.image("De fritte oven - een schets van het proces.jpg", width=200)
# https://docs.streamlit.io/library/api-reference/widgets/st.text_area
# st.text_area
# Streamlit Version -Version 1.32.0
# Display a multi-line text input widget.
# txt = st.text_area() # is voor text input !
# st.header('This is a header with a divider', divider='rainbow')
st.header('Hier alvast een klein aantal voorbeeldvragen die je aan deze AI adviseur voor niet-giftige glazuren zou kunnen stellen:', divider='rainbow')
# st.write("**Hier alvast een klein aantal voorbeeldvragen die je aan deze AI adviseur voor niet-giftige glazuren zou kunnen stellen:**")
st.write("\n")
st.write("Hoe kan ik thuis als hobby keramiek maken? Geef het antwoord uitsluitend en alleen in de Nederlands taal ")
st.write("Geef een samenvatting in 10 zinnen. ")
st.write("Geef een samenvatting in 25 bullet points. ")
st.write("Geef een samenvatting in 25 bullet points. Geef het antwoord uitsluitend en alleen in de Nederlandse taal. ")
st.write("Geef een samenvatting in 25 bullet points. Geef het antwoord uitsluitend en alleen in de Duitse taal. ")
st.write("Explain glazing techniques to me as if I am 10 years old. ")
st.write("Geef me uitleg over glazuurtechnieken alsof ik 5 jaar oud ben. Geef het antwoord uitsluitend en alleen in de Nederlandse taal.")
st.write(" ... ")
st.header('Voorbeeldvragen met voorbeeldantwoorden die je aan deze AI adviseur voor niet-giftige glazuren zou kunnen stellen:', divider='rainbow')
st.write("Wie ben ik?\n")
st.write("assistant avatar:")
st.write("Gezien de tekst is het waarschijnlijk dat u heer Victor Benckhuijsen bent. U bent iemand die ervaring heeft opgedaan met het maken van glazuren voor keramiek, met name alkalische fritten. U heeft deze ervaring opgedaan op verschillende plekken, zoals de kunstacademie, de agrarische hogeschool en de geologie en bodemkunde. U benadrukt de waarden van veiligheid en het belang van het gebruik van non-giftige materialen. U verkoopt geen recepten, maar verstrekt wel veiligheidsattesten op verzoek. U benadrukt ook de voordelen van het gebruik van industriële fritten voor hobbyisten, omdat dit een veilige en eenvoudige manier is om non-giftige keramische glazuren te maken.")
st.write("(wordt vervolgd)")
# ========================================================================
with tab1:
st.header("AI Adviseur voor niet-giftige glazuren")
st.image("De fritte oven - een schets van het proces.jpg", width=200)
# JB:
# LangChainDeprecationWarning: Importing embeddings from langchain is deprecated.
# Importing from langchain will no longer be supported as of langchain==0.2.0.
# Please import from langchain-community instead:
# `from langchain_community.embeddings import FastEmbedEmbeddings`.
# To install langchain-community run `pip install -U langchain-community`.
from langchain_community.embeddings import FastEmbedEmbeddings
import os
import streamlit as st
from langchain_groq import ChatGroq
from langchain_community.document_loaders import WebBaseLoader
# JB:
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import OllamaEmbeddings
# JB:
from langchain_community.embeddings import FastEmbedEmbeddings
from langchain_community.document_loaders import PyPDFDirectoryLoader
# JB:
# File Directory
# This covers how to load all documents in a directory.
# Under the hood, by default this uses the UnstructuredLoader.
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.document_loaders import TextLoader
import chardet
from langchain_community.vectorstores import FAISS
# from langchain.vectorstores import Chroma
# from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
import time
from dotenv import load_dotenv
import glob
load_dotenv() #
groq_api_key = os.environ['GROQ_API_KEY']
# groq_api_key = "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" # os.environ['GROQ_API_KEY']
# groq_api_key = "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" # JB OK 24-03-2024
# print("groq_api_key: ", groq_api_key)
# st.title("Chat with Docs - Groq Edition :) ")
# # st.title ("this is the app title")
# st.title("Non-Toxic Glaze Advisor:")
# st.subheader("A tool for getting advicgroqe on non-toxic ceramic glazes for earthenware temperature ranges.")
# st.subheader("Victor Benchuijsen : (Glaze techniques / Ceramics)")
# st.subheader("Jan Bours : Artificial Intelligence / Data Science / Natural Language Processing (ALL RIGHTS RESERVED)")
# st.write("---------------------------------")
# st.subheader("Chat with Docs - Using AI: 'mixtral-8x7b-32768' Groq Edition (Very Fast!) - VERSION 1 - March 18, 2024")
# st.write("---------------------------------")
st.title("Adviseur voor niet-giftige glazuren:")
st.subheader("Een gereedschap gebaseerd op Kunstmatige Intelligentie (AI) om advies te krijgen over niet-giftige keramische glazuren voor aardewerk temperatuur bereiken.")
st.write("---------------------------------")
st.subheader("Victor Benckhuijsen : (Glazuur technieken / Keramiek)")
st.subheader("(ALL RIGHTS RESERVED)")
st.image('Victor_Benckhuijsen_2.png', caption='Victor Benckhuijsen', width=100)
# st.subheader("---------------------------------")
# st.write("---------------------------------")
st.subheader("Jan Bours : Artificial Intelligence / Data Science / Natural Language Processing")
st.subheader("(ALL RIGHTS RESERVED)")
st.image('Jan_Bours_2.png', caption='Jan Bours', width=100)
st.write("---------------------------------")
st.subheader("Chat with Docs - Using AI: 'mixtral-8x7b-32768' Groq Edition (Very Fast!) - VERSION 2 - April 3, 2024")
st.write("---------------------------------")
# st.header("LIST OF ALL THE LOADED DOCUMENTS: ")
st.header("LIJST MET ALLE ACTUEEL GELADEN DOCUMENTEN: ")
st.write("")
pdf_files = glob.glob("*.pdf")
# word_files = glob.glob("*.docx")
for file in pdf_files:
# for file in word_files:
st.subheader(file)
st.write("---------------------------------")
start1 = time.process_time()
if "vector" not in st.session_state:
st.write("Even geduld a.u.b. ........")
# st.header("Chunking, embedding, storing in FAISS vectorstore (Can take a long time!).")
# st.subheader("Wait till this hase been done before you can enter your query! .......")
# st.session_state.embeddings = OllamaEmbeddings() # ORIGINAL
st.session_state.embeddings = FastEmbedEmbeddings() # JB
# st.session_state.loader = WebBaseLoader("https://paulgraham.com/greatwork.html") # ORIGINAL
# st.session_state.docs = st.session_state.loader.load() # ORIGINAL
# https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html
# https://python.langchain.com/docs/integrations/document_loaders/merge_doc
# from langchain_community.document_loaders import PyPDFLoader
# loader_pdf = PyPDFLoader("../MachineLearning-Lecture01.pdf")
#
# https://stackoverflow.com/questions/60215731/pypdf-to-read-each-pdf-in-a-folder
#
# https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.PyPDFDirectoryLoader.html
# https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#pypdf-directory
# !!!!!
# PyPDF Directory
# Load PDFs from directory
# from langchain_community.document_loaders import PyPDFDirectoryLoader
# loader = PyPDFDirectoryLoader("example_data/")
# docs = loader.load()
#
# ZIE OOK:
# https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#using-pypdf
# Using MathPix
# Inspired by Daniel Gross's https://gist.github.com/danielgross/3ab4104e14faccc12b49200843adab21
# from langchain_community.document_loaders import MathpixPDFLoader
# loader = MathpixPDFLoader("example_data/layout-parser-paper.pdf")
# data = loader.load()
# pdf_file_path = "*.pdf" # JB
# st.session_state.loader = PyPDFLoader(file_path=pdf_file_path).load() # JB
# st.session_state.loader = PyPDFLoader(*.pdf).load() # JB syntax error *.pdf !
# st.session_state.loader = PyPDFDirectoryLoader("*.pdf") # JB PyPDFDirectoryLoader("example_data/")
# chunks = self.text_splitter.split_documents(docs)
# chunks = filter_complex_metadata(chunks)
# JB:
# https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#pypdf-directory
# st.session_state.docs = st.session_state.loader.load()
# loader = PyPDFDirectoryLoader(".")
# docs = loader.load()
# st.session_state.docs = docs
# https://docs.streamlit.io/library/api-reference/status/st.status
# st.status(label, *, expanded=False, state="running")
with st.status("Laden van de PDF documenten / Splitting de teksten / Genereer de Vector Store ...", expanded=True) as status:
# st.write("Searching for data...")
# time.sleep(2)
# st.write("Found URL.")
# time.sleep(1)
# st.write("Downloading data...")
# time.sleep(1)
#status.update(label="Download complete!", state="complete", expanded=False)
st.write("Laden van de PDF documenten...")
# JB:
# https://python.langchain.com/docs/modules/data_connection/document_loaders/file_directory
# text_loader_kwargs={'autodetect_encoding': True}
text_loader_kwargs={'autodetect_encoding': False}
path = '../'
# loader = DirectoryLoader(path, glob="**/*.pdf", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)
# PyPDFDirectoryLoader (TEST):
# loader = PyPDFDirectoryLoader(path, glob="**/*.pdf", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)
# loader = PyPDFDirectoryLoader(path, glob="**/*.pdf", loader_kwargs=text_loader_kwargs)
loader = PyPDFDirectoryLoader(path, glob="**/*.pdf")
docs = loader.load()
st.session_state.docs = docs
# JB 18-03-2024:
# https://python.langchain.com/docs/integrations/document_loaders/
# MICROSOFT WORD:
# https://python.langchain.com/docs/integrations/document_loaders/microsoft_word
# 1 - Using Docx2txt
# Load .docx using Docx2txt into a document.
# %pip install --upgrade --quiet docx2txt
# from langchain_community.document_loaders import Docx2txtLoader
# loader = Docx2txtLoader("example_data/fake.docx")
# data = loader.load()
# data
# [Document(page_content='Lorem ipsum dolor sit amet.', metadata={'source': 'example_data/fake.docx'})]
#
# 2A - Using Unstructured
# from langchain_community.document_loaders import UnstructuredWordDocumentLoader
# loader = UnstructuredWordDocumentLoader("example_data/fake.docx")
# data = loader.load()
# data
# [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'fake.docx'}, lookup_index=0)]
#
# 2B - Retain Elements
# Under the hood, Unstructured creates different “elements” for different chunks of text.
# By default we combine those together, but you can easily keep that separation by specifying mode="elements".
# loader = UnstructuredWordDocumentLoader("example_data/fake.docx", mode="elements")
# data = loader.load()
# data[0]
# Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'fake.docx', 'filename': 'fake.docx', 'category': 'Title'}, lookup_index=0)
#
# 2A - Using Unstructured
# from langchain_community.document_loaders import UnstructuredWordDocumentLoader
# loader = UnstructuredWordDocumentLoader(path, glob="**/*.docx")
# docs = loader.load()
# st.session_state.docs = docs
st.write("Splitting / chunking de teksten...")
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
st.session_state.documents = st.session_state.text_splitter.split_documents(st.session_state.docs)
st.write("Genereer de Vector Store (kan enige minuten duren)...")
# https://python.langchain.com/docs/integrations/vectorstores/faiss
# docs_and_scores = db.similarity_search_with_score(query)
# Saving and loading
# You can also save and load a FAISS index.
# This is useful so you don’t have to recreate it everytime you use it.
# db.save_local("faiss_index")
# new_db = FAISS.load_local("faiss_index", embeddings)
# docs = new_db.similarity_search(query)
# docs[0]
# Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'})
#
st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
# st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
#st.session_state.vector.save_local("faiss_index")
# The de-serialization relies loading a pickle file.
# Pickle files can be modified to deliver a malicious payload that results in execution of arbitrary code on your machine.
# You will need to set `allow_dangerous_deserialization` to `True` to enable deserialization. If you do this, make sure that you trust the source of the data.
#st.session_state.vector = FAISS.load_local("faiss_index", st.session_state.embeddings, allow_dangerous_deserialization=True)
# ZIE:
# ZIE VOOR EEN APP MET CHROMADB:
# https://github.com/vndee/local-rag-example/blob/main/rag.py
# https://raw.githubusercontent.com/vndee/local-rag-example/main/rag.py
# Chroma.from_documents(documents=chunks, embedding=FastEmbedEmbeddings())
# st.session_state.vector = Chroma.from_documents(st.session_state.documents, st.session_state.embeddings) # JB
# st.write(f"Response time van de LLM: {elapsed_time:.1f} seconds")
# print(f"Response time: {time.process_time() - start}")
elapsed_time = time.process_time() - start1
st.write(f"Response time voor: Laden van de PDF documenten / Splitting de teksten / Genereer de Vector Store: {elapsed_time:.1f} seconds")
st.write("---------------------------------")
# st.title("Chat with Docs - Groq Edition :) ")
# st.title("Literature Based Research (LBR) - A. Unzicker and J. Bours - Chat with Docs - Groq Edition (Very Fast!) - VERSION 3 - March 8 2024")
llm = ChatGroq(
temperature=0.2,
groq_api_key=groq_api_key,
model_name='mixtral-8x7b-32768'
)
prompt = ChatPromptTemplate.from_template("""
Answer the following question based only on the provided context.
Think step by step before providing a detailed answer.
I will tip you $200 if the user finds the answer helpful.
<context>
{context}
</context>
Question: {input}""")
document_chain = create_stuff_documents_chain(llm, prompt)
retriever = st.session_state.vector.as_retriever()
retrieval_chain = create_retrieval_chain(retriever, document_chain)
## prompt = st.text_input("Input your prompt here") #, key=key)
#prompt = st.text_input("Stel hieronder Uw vraag:") #, key=key)
#
## If the user hits enter
#if prompt:
# # Then pass the prompt to the LLM
# start = time.process_time()
# response = retrieval_chain.invoke({"input": prompt})
# # print(f"Response time: {time.process_time() - start}")
# st.write(f"Response time: {time.process_time() - start} seconds")
#
# st.write(response["answer"])
#
# # With a streamlit expander
# with st.expander("Document Similarity Search"):
# # Find the relevant chunks
# for i, doc in enumerate(response["context"]):
# # print(doc)
# # st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
# st.write(doc)
# st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
#
#
# st.write(doc.page_content)
# st.write("--------------------------------")
#
#st.write("---------------------------------")
# ZIE:
# https://raw.githubusercontent.com/streamlit/llm-examples/main/Chatbot.py
# from openai import OpenAI
# import streamlit as st
with st.sidebar:
# openai_api_key = st.text_input("OpenAI API Key", key="chatbot_api_key", type="password")
UserEmailAdress = st.text_input("Vul Uw email adres hier in: ", key="UserEmailAdress", type="password")
# "[Zelf keramische glazuren NON TOXIC samenstellen vanuit 1 basisglazuur](http://www.ceramicconcepts.nl/)"
"[Keramische ateliers Victor Benckhuijsen](https://victorglazuren.nl/)"
"[Keramiek Victor Glazuren Victor Benckhuijsen - Instagram](https://www.instagram.com/benckhuijsenvictor/?hl=am-et)"
"[Keramiek Victor Glazuren Victor Benckhuijsen - Facebook](https://www.facebook.com/harryjamaar)"
"[Keramiek Victor Glazuren Victor Benckhuijsen - YouTube](https://www.youtube.com/@kleienhoop/videos)"
st.title("💬 Chatbot")
st.caption("🚀 A streamlit chatbot powered by mixtral-8x7b-32768 Groq LLM (VERY FAST !). temperature=0.2")
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "assistant", "content": "Hoe kan ik U helpen?"}]
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
# TAAL KIEZER
option = st.selectbox(
'In welke taal wilt U Uw vragen stellen en de AI laten antwoorden? Keuzemogelijkheden zijn : Nederlands, Engels, Duits, Frans, Spaans.',
('Nederlands', 'Engels', 'Duits', 'Frans', 'Spaans'))
st.write('You selected:', option)
#language_prompt = " Antwoordt uitsluitend en alleen in de taal: " + option + " en beslist niet in een andere taal!"
# st.write('language_prompt:', language_prompt)
if prompt := st.chat_input():
#if not openai_api_key:
# st.info("Please add your OpenAI API key to continue.")
# st.stop()
## TAAL KIEZER
#option = st.selectbox(
# 'In welke taal wilt U Uw vragen stellen en de AI laten antwoorden? Keuzemogelijkheden zijn : Nederlands, Engels, Duits, Frans, Spaans.',
# ('Nederlands', 'Engels', 'Duits', 'Frans', 'Spaans'))
#
#st.write('You selected:', option)
#language_prompt = " Antwoordt uitsluitend en alleen in de taal: " + option + " en beslist niet in een andere taal!"
original_prompt = prompt
prompt = prompt + language_prompt
# st.write('prompt + language_prompt:', prompt)
# Then pass the prompt to the LLM
start = time.process_time()
response = retrieval_chain.invoke({"input": prompt})
# print(f"Response time: {time.process_time() - start}")
elapsed_time = time.process_time() - start
st.write(f"Response time van de LLM: {elapsed_time:.1f} seconds")
# st.write(response["answer"])
# https://docs.streamlit.io/library/api-reference/chat/st.chat_message
# st.chat_message(name, *, avatar=None)
# The avatar shown next to the message. Can be one of:
# - A single emoji, e.g. "🧑‍💻", "🤖", "🦖". Shortcodes are not supported.
# - An image using one of the formats allowed for st.image: path of a local image file;
# URL to fetch the image from; an SVG image; array of shape (w,h) or (w,h,1) for a monochrome image,
# (w,h,3) for a color image, or (w,h,4) for an RGBA image.
# If None (default), uses default icons if name is "user", "assistant", "ai", "human" or the first letter of the name value.
#client = OpenAI(api_key=openai_api_key)
st.session_state.messages.append({"role": "user", "content": prompt})
# st.chat_message("user").write(prompt)
# original_prompt
st.chat_message("user").write(original_prompt)
# response = client.chat.completions.create(model="gpt-3.5-turbo", messages=st.session_state.messages)
# msg = response.choices[0].message.content
msg = response["answer"]
st.session_state.messages.append({"role": "assistant", "content": msg})
# st.chat_message("assistant").write(msg)
# MET ALS AVATAR EEN IMAGE VAN VICTOR:
st.chat_message("assistant", avatar="Victor_Benckhuisen_20_percent.jpg").write(msg)
# With a streamlit expander
with st.expander("Document Similarity Search"):
# Find the relevant chunks
for i, doc in enumerate(response["context"]):
# print(doc)
# st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
st.write(doc)
st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
st.write(doc.page_content)
st.write("--------------------------------")
# Show total messages history of user + AI in this session up till this point
with st.expander("Show total messages history of user + AI in this session up till this point"):
# st.session_state.messages
st.write(st.session_state.messages)
st.write("--------------------------------")
st.write("---------------------------------")
#i=0
#while True:
#
# # data = ["input1", "input2", "input3"]
#
# #for i, item in enumerate(data):
# key = f"input_{i}"
# # text_input = st.text_input(f"Enter value for {item}", key=key)
# # Access the value directly
# print(f"Value for key: {key}")
#
# i=i+1
#
# prompt = st.text_input("Input your prompt here", key=key)
#
#
# # If the user hits enter
# if prompt:
# # Then pass the prompt to the LLM
# start = time.process_time()
# response = retrieval_chain.invoke({"input": prompt})
# # print(f"Response time: {time.process_time() - start}")
# st.write(f"Response time: {time.process_time() - start} seconds")
#
# st.write(response["answer"])
#
# # With a streamlit expander
# with st.expander("Document Similarity Search"):
# # Find the relevant chunks
# for i, doc in enumerate(response["context"]):
# # print(doc)
# # st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
# st.write(doc)
# st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
#
#
# st.write(doc.page_content)
# st.write("--------------------------------")
#
# st.write("---------------------------------")