Update app.py
Browse files
app.py
CHANGED
@@ -15,9 +15,9 @@ from langchain_community.embeddings import OllamaEmbeddings
|
|
15 |
# JB:
|
16 |
from langchain.embeddings import FastEmbedEmbeddings
|
17 |
|
18 |
-
|
19 |
# from langchain.vectorstores import Chroma
|
20 |
-
from langchain_community.vectorstores import Chroma
|
21 |
|
22 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
23 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
@@ -45,17 +45,17 @@ if "vector" not in st.session_state:
|
|
45 |
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
46 |
st.session_state.documents = st.session_state.text_splitter.split_documents( st.session_state.docs)
|
47 |
# st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
|
|
|
48 |
# ZIE:
|
49 |
# ZIE VOOR EEN APP MET CHROMADB:
|
50 |
# https://github.com/vndee/local-rag-example/blob/main/rag.py
|
51 |
# https://raw.githubusercontent.com/vndee/local-rag-example/main/rag.py
|
52 |
# Chroma.from_documents(documents=chunks, embedding=FastEmbedEmbeddings())
|
53 |
-
st.session_state.vector = Chroma.from_documents(st.session_state.documents, st.session_state.embeddings) # JB
|
54 |
|
55 |
|
56 |
# st.title("Chat with Docs - Groq Edition :) ")
|
57 |
-
st.title("Literature Based Research (LBR) - Alexander Unzicker and Jan Bours - Chat with Docs - Groq Edition (Very Fast!) ")
|
58 |
-
|
59 |
|
60 |
llm = ChatGroq(
|
61 |
groq_api_key=groq_api_key,
|
|
|
15 |
# JB:
|
16 |
from langchain.embeddings import FastEmbedEmbeddings
|
17 |
|
18 |
+
from langchain_community.vectorstores import FAISS
|
19 |
# from langchain.vectorstores import Chroma
|
20 |
+
# from langchain_community.vectorstores import Chroma
|
21 |
|
22 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
23 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
|
|
45 |
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
46 |
st.session_state.documents = st.session_state.text_splitter.split_documents( st.session_state.docs)
|
47 |
# st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
|
48 |
+
st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
|
49 |
# ZIE:
|
50 |
# ZIE VOOR EEN APP MET CHROMADB:
|
51 |
# https://github.com/vndee/local-rag-example/blob/main/rag.py
|
52 |
# https://raw.githubusercontent.com/vndee/local-rag-example/main/rag.py
|
53 |
# Chroma.from_documents(documents=chunks, embedding=FastEmbedEmbeddings())
|
54 |
+
# st.session_state.vector = Chroma.from_documents(st.session_state.documents, st.session_state.embeddings) # JB
|
55 |
|
56 |
|
57 |
# st.title("Chat with Docs - Groq Edition :) ")
|
58 |
+
st.title("Literature Based Research (LBR) - Alexander Unzicker and Jan Bours - Chat with Docs - Groq Edition (Very Fast!) - 2")
|
|
|
59 |
|
60 |
llm = ChatGroq(
|
61 |
groq_api_key=groq_api_key,
|