JBHF commited on
Commit
c14f973
1 Parent(s): 6bbef59

Update ToDo.md

Browse files
Files changed (1) hide show
  1. ToDo.md +254 -0
ToDo.md CHANGED
@@ -54,6 +54,260 @@ https://huggingface.co/spaces/JBHF/persistent-data?logs=container
54
 
55
 
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
 
59
 
 
54
 
55
 
56
 
57
+ ------------------
58
+
59
+ I want to persist files in a Streamlit python application on Hugging Faces. Explain me in painstakingly detail how to do that - POE WEB-SEARCH - 22-03-2024 !!!!!
60
+
61
+ POE WEB-SEARCH:
62
+ https://poe.com/s/6MTNnCP4tYGFqXUgjppX
63
+
64
+
65
+ EVERNOTE :
66
+ https://www.evernote.com/shard/s313/nl/41973486/87117657-5e23-497d-af42-0dac60f5e68f/
67
+ I want to persist files in a Streamlit python application on Hugging Faces. Explain me in painstakingly detail how to do that - POE WEB-SEARCH - 22-03-2024 !!!!!
68
+
69
+
70
+
71
+ 22-03-2024
72
+
73
+
74
+ ---
75
+
76
+ I want to persist files in a Streamlit python application on Hugging Faces. Explain me in painstakingly detail how to do that - POE WEB-SEARCH - 22-03-2024 !!!!!
77
+
78
+ POE WEB-SEARCH:
79
+ https://poe.com/s/6MTNnCP4tYGFqXUgjppX
80
+
81
+
82
+
83
+ Knip bron: I%20want%20to%20persist%20files%20in%20a%20Streamlit%20python%20application%20on%20Hugging%20Faces.%20Explain%20me%20in%20painstakingly%20detail%20how%20to%20do%20that%20-%20Poe
84
+
85
+
86
+
87
+ Shared conversation
88
+ Web-Search · 14:37
89
+
90
+ I want to persist files in a Streamlit python application on Hugging Faces. Explain me in painstakingly detail how to do that
91
+
92
+
93
+
94
+ Web-Search
95
+ Poe
96
+
97
+ To persist files in a Streamlit Python application on Hugging Faces, you can follow these steps:
98
+
99
+ 1. Choose a storage solution: First, you need to decide on a storage solution to persist your files. Some popular options include local file storage, cloud storage services like Amazon S3 or Google Cloud Storage, or using the Hugging Face Datasets library.
100
+ 2. Import the necessary libraries: Depending on the storage solution you choose, you may need to import the corresponding libraries. For example, if you're using Hugging Face Datasets, you'll need to import the datasets library.
101
+ 3. Create a function to save the files: Write a function that takes the file data as input and saves it to the chosen storage solution. This function should handle any necessary authentication or authorization steps required by the storage solution.
102
+ 4. Integrate the function into your Streamlit app: In your Streamlit app, create a file upload component using the st.file_uploader function. When a file is uploaded, pass the file data to the save function you created in the previous step to persist it.
103
+ 5. Display the persisted files: If you want to display the persisted files in your Streamlit app, you can retrieve them from the storage solution and render them using Streamlit's built-in components like st.image or st.download_button.
104
+
105
+ Here's an example of how you can persist files using Hugging Face Datasets:
106
+
107
+ python
108
+ ```
109
+ import streamlit as st
110
+ from datasets import Dataset
111
+ # Create a function to save the files
112
+ def save_files(file_data):
113
+ # Save the file data to a persistent dataset using Hugging Face Datasets
114
+ dataset = Dataset.from_dict({"file_data": file_data})
115
+ dataset.save_to_disk("path/to/dataset")
116
+ # Create the Streamlit app
117
+ def main():
118
+ st.title("File Upload App")
119
+ file = st.file_uploader("Upload a file")
120
+ if file is not None:
121
+ # Read the file data
122
+ file_data = file.read()
123
+
124
+ # Save the file
125
+ save_files(file_data)
126
+
127
+ st.success("File saved successfully!")
128
+ if __name__ == "__main__":
129
+ main()
130
+
131
+ ```
132
+
133
+ In this example, the save_files function takes the file data as input and saves it to a persistent dataset using Hugging Face Datasets. The main function is the entry point of the Streamlit app and includes a file upload component. When a file is uploaded, the file data is passed to the save_files function to persist it.
134
+ ---
135
+ Learn more:
136
+ 1. Save Data from Streamlit Session to Persist Changes to HF Datasets - Datasets - Hugging Face Forums
137
+ 2. Streamlit Spaces
138
+ 3. Deploy your Streamlit Web App Using Hugging Face | by Imanuelyosi | Medium
139
+
140
+
141
+
142
+
143
+
144
+
145
+ Can you provide an example of how to retrieve and display the persisted files in the Streamlit app?
146
+
147
+
148
+ Web-Search
149
+ Poe
150
+
151
+ Certainly! Here's an example of how you can retrieve and display persisted files in a Streamlit app:
152
+
153
+ python
154
+ ```
155
+ import streamlit as st
156
+ from datasets import Dataset
157
+ # Function to retrieve the persisted files
158
+ def retrieve_files():
159
+ # Load the dataset containing the persisted files using Hugging Face Datasets
160
+ dataset = Dataset.load_from_disk("path/to/dataset")
161
+ # Retrieve the file data from the dataset
162
+ file_data = dataset["file_data"]
163
+ return file_data
164
+ # Create the Streamlit app
165
+ def main():
166
+ st.title("Persisted Files App")
167
+ # Retrieve the persisted files
168
+ file_data = retrieve_files()
169
+
170
+ # Display the persisted files
171
+ if file_data:
172
+ for file in file_data:
173
+ st.write(f"File Name: {file.name}")
174
+ st.write(f"File Size: {file.size} bytes")
175
+ st.write(f"File Type: {file.type}")
176
+ st.write("---")
177
+ if __name__ == "__main__":
178
+ main()
179
+
180
+ ```
181
+
182
+ In this example, the retrieve_files function loads the dataset containing the persisted files using Hugging Face Datasets and retrieves the file data. The main function is the entry point of the Streamlit app. It calls the retrieve_files function to get the persisted files and then displays the file name, size, and type using Streamlit's st.write function.
183
+ ---
184
+ Learn more:
185
+ 1. Streamlit Share - Persist files - ☁️ Community Cloud - Streamlit
186
+ 2. View files from streamlit cloud - ☁️ Community Cloud - Streamlit
187
+ 3. Where are saved files? - Deployment - Streamlit
188
+
189
+
190
+
191
+
192
+
193
+
194
+ How can I install the Hugging Face Datasets library?
195
+
196
+
197
+ Web-Search
198
+ Poe
199
+
200
+ To install the Hugging Face Datasets library, you can follow these steps:
201
+
202
+ 1. Virtual environment: It is recommended to install Hugging Face Datasets in a virtual environment to keep things organized and avoid dependency conflicts. You can create and navigate to your project directory using the following commands:
203
+ 2. Activate virtual environment: Start a virtual environment inside your project directory. You can activate the virtual environment with the following command:
204
+ 3. Install with pip: The most straightforward way to install Hugging Face Datasets is using pip. Run the following command to install the library:
205
+ 4. Verify installation: To check if Hugging Face Datasets has been properly installed, you can run the following command:
206
+
207
+ This command downloads version 1 of the Stanford Question Answering Dataset (SQuAD), loads the training split, and prints the first training example.
208
+
209
+ That's it! You have successfully installed the Hugging Face Datasets library.
210
+ ---
211
+ Learn more:
212
+ 1. Installation — datasets 1.11.0 documentation - Hugging Face
213
+ 2. Installation
214
+ 3. Installation - datasets 1.16.1 documentation
215
+
216
+
217
+
218
+
219
+
220
+
221
+ How can I save a FAISS vector store file as a persistent file generated as part of a RAG application running as Streamlit application on Hugging Face Spaces
222
+
223
+
224
+ Web-Search
225
+ Poe
226
+
227
+ To save a FAISS vector store file as a persistent file in a RAG application running as a Streamlit application on Hugging Face Spaces, you can follow these steps:
228
+
229
+ 1. Import the necessary libraries: First, make sure you have the required libraries installed. You will need faiss for working with the FAISS vector store and huggingface_hub for saving the file to a persistent location.
230
+ 2. Load the FAISS vector store: Use the faiss.read_index function to load the FAISS index from the vector store file. This will give you an instance of the FAISS index that you can work with.
231
+ 3. Perform your operations: Perform any necessary operations on the FAISS index, such as querying or updating the vectors.
232
+ 4. Save the FAISS index: Once you have made the desired changes to the FAISS index, you can save it as a persistent file. To do this, you can use the index.serialize method provided by FAISS. This method serializes the index into a byte array.
233
+ 5. Upload the serialized index: To save the serialized index as a persistent file in Hugging Face Spaces, you can use the huggingface_hub.upload_file method. This method allows you to upload a file to a specific repository on the Hugging Face Hub. You will need to provide the path to the serialized index file, the path in the repository where you want to save it, the repository ID, and your Hugging Face token.
234
+ 6. Access the persistent file: Once the file is uploaded, you can access it from your Streamlit application running on Hugging Face Spaces by using the appropriate URL or path.
235
+
236
+ Here is an example code snippet that demonstrates these steps:
237
+
238
+ python
239
+ ```
240
+ import faiss
241
+ from huggingface_hub import upload_file
242
+ # Step 1: Import the necessary libraries
243
+
244
+ # Step 2: Load the FAISS vector store
245
+ index = faiss.read_index('path/to/vector_store.faiss')
246
+ # Step 3: Perform your operations
247
+
248
+ # Step 4: Save the FAISS index
249
+ serialized_index = faiss.serialize_index(index)
250
+
251
+ # Step 5: Upload the serialized index
252
+ upload_file(serialized_index, path_in_repo='path/in/repo/vector_store.faiss', repo_id='your_repo_id', token='your_token')
253
+ # Step 6: Access the persistent file
254
+ # You can access the file using the appropriate URL or path in your Streamlit application
255
+
256
+ ```
257
+
258
+ Please note that you will need to replace 'path/to/vector_store.faiss' with the actual path to your FAISS vector store file, 'path/in/repo/vector_store.faiss' with the desired path in your repository, 'your_repo_id' with the ID of your repository on the Hugging Face Hub, and 'your_token' with your Hugging Face token.
259
+ ---
260
+ Learn more:
261
+ 1. Save Data from Streamlit Session to Persist Changes to HF Datasets - Datasets - Hugging Face Forums
262
+ 2. Write to a file in spaces - Spaces - Hugging Face Forums
263
+ 3. Upload File API for Saving to Persistent Datasets on HF Spaces - Datasets - Hugging Face Forums
264
+
265
+
266
+
267
+
268
+
269
+
270
+ How can I load the FAISS index back in from the persistent file
271
+
272
+
273
+ Web-Search
274
+ Poe
275
+
276
+ To load a FAISS index from a persistent file in Python, you can use the faiss.read_index function. This function allows you to read the index from a file and load it back into memory. Here's how you can do it:
277
+
278
+ python
279
+ ```
280
+ import faiss
281
+ # Specify the path to the persistent file
282
+ filename = "path/to/index_file"
283
+
284
+ # Load the index from the persistent file
285
+ index = faiss.read_index(filename)
286
+
287
+ ```
288
+
289
+ In the code above, you need to replace "path/to/index_file" with the actual path to your persistent file.
290
+
291
+ Once you have loaded the index, you can use it for similarity search or any other operations supported by FAISS.
292
+
293
+ ---
294
+ Learn more:
295
+ 1. python - How to write a Faiss index to memory? - Stack Overflow
296
+ 2. Faiss: A library for efficient similarity search - Engineering at Meta
297
+ 3. Introduction to Facebook AI Similarity Search (Faiss) | Pinecone
298
+
299
+
300
+ This conversation may have been edited by the sharer.
301
+
302
+
303
+ Talk to Web-Search on Poe
304
+
305
+
306
+ ---
307
+
308
+
309
+ ------------------
310
+
311
 
312
 
313