File size: 20,289 Bytes
9672308
59ccc47
a4023d4
31211a0
48cb3ec
 
 
 
 
 
 
 
 
 
 
91acae4
48cb3ec
 
 
 
 
 
 
 
 
9b74628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224f730
 
c30e054
3e1528d
 
9672308
3e1528d
c30e054
 
 
 
 
 
 
 
23953c2
 
 
34ab304
 
c30e054
34ab304
 
 
 
 
 
 
 
 
c30e054
 
 
 
 
 
 
 
 
 
 
12459a7
 
 
4c08b15
12459a7
c30e054
 
 
 
 
 
 
 
 
c7b34fc
 
 
 
5e4079a
c7b34fc
c30e054
 
 
 
 
 
 
 
 
 
 
e648677
2aea58e
 
 
 
 
fd851ca
 
cd6930a
7fa917e
c30e054
55d4dab
 
 
 
 
 
 
 
fd851ca
 
55d4dab
7fa917e
55d4dab
c30e054
 
7fa917e
c30e054
 
 
 
 
 
 
 
 
 
 
 
 
21d4955
 
 
 
 
 
 
 
 
f05f6c0
21d4955
 
23953c2
 
 
 
 
4c08b15
 
 
 
23953c2
 
 
 
 
 
21d4955
 
 
 
 
 
 
 
faeaeec
 
 
 
38f82b7
21d4955
 
 
 
1641de2
 
81705ec
 
21d4955
 
 
 
 
 
 
 
 
f05f6c0
21d4955
 
 
 
 
 
f05f6c0
 
eb24b82
81705ec
eb24b82
 
 
9b74628
23953c2
 
dbba60d
 
 
 
 
 
 
 
 
 
 
fc21ab5
bf05c81
fc21ab5
 
 
23953c2
81705ec
23953c2
bf05c81
dbba60d
bf05c81
 
 
23953c2
7a19510
23953c2
7a19510
 
 
 
21d4955
7a19510
21d4955
 
59ccc47
21d4955
 
7a19510
 
 
23953c2
 
7a19510
 
 
 
4c08b15
7a19510
 
fd851ca
7a19510
 
59ccc47
 
e74d585
 
7a19510
 
 
21d4955
7a19510
 
 
74d6df1
7a19510
 
 
21d4955
 
 
 
 
 
9b74628
b65c75c
59ccc47
 
 
 
 
faeaeec
 
 
 
 
 
 
 
 
 
b65c75c
c7b34fc
fd851ca
 
faeaeec
9b74628
faeaeec
 
 
7c29f91
 
a26bf93
 
aa39906
899ee30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# JBHF/VERTAAL-APP-EAGLE-SHELTER/app.py - 16-04-2024, 15u30m CET (app-16-04-2024-14u00m-CET.py)
# WERKT AL: DE OPGENOMEN AUDIO MBV DEZE APP, audio.wav, HOEFT NIET PERSÉ GEPERSISTEERD TE WORDEN !!!!!!

# https://github.com/theevann/streamlit-audiorecorder
# An audio Recorder for streamlit
#
# Description
# Audio recorder component for streamlit.
# It creates a button to start the recording and takes three arguments:
# the start button text, the stop button text, and the pause button text.
# If the pause button text is not specified, the pause button is not displayed.
#
# Parameters
# The signature of the component is:
# audiorecorder(start_prompt="Start recording", stop_prompt="Stop recording", pause_prompt="", key=None):
# The prompt parameters are self-explanatory, and the optional key parameter is used internally by streamlit 
# to properly distinguish multiple audiorecorders on the page.
#
# Return value
# The component's return value is a pydub AudioSegment.
#
# All AudioSegment methods are available, in particular you can:
# - Play the audio in the frontend with st.audio(audio.export().read())
# - Save the audio to a file with audio.export("audio.wav", format="wav")
#   JB: Waarom zie ik in mijn HF Spaces omgeving de file "audio.wav" niet terug ?
#   JB: 08-04-2024 - Mogelijk is caching al voldoende (anders file persistence)#
#                    Zie hiervoor:
#
# CACHING:
# ========
# STREAMLIT - Caching overview - Streamlit Docs - 07-04-2024 !!!!!
# https://docs.streamlit.io/develop/concepts/architecture/caching
#
# EVERNOTE :
# https://www.evernote.com/shard/s313/nl/41973486/31880952-8bd9-41ef-8047-ca844143e833/
# STREAMLIT - Caching overview - Streamlit Docs - 07-04-2024 !!!!!
#
# 08-04-2024
#
# EN
#
# PERSISTENCE:
# ============
# HF SPACES STREAMLIT APPS - GET PASSWORDS AND ACCESS TOKENS FROM HF ENVIRONMENT ! - PERSISTENT STORAGE ON HF SPACES ! - EAGLE SHELTER VERTAAL APP ETC ! - app.py · julien-c/persistent-data at main - 20-03-2024 !!!!! !!!!! !!!!!
# https://huggingface.co/spaces/julien-c/persistent-data/blob/main/app.py
#
# ——->
#
# DUPLICATED TO:
# https://huggingface.co/spaces/JBHF/persistent-data?logs=container
#
# EVERNOTE :
# https://www.evernote.com/shard/s313/nl/41973486/1b07098e-3376-4316-abb3-b3d0996ebf03/
# HF SPACES STREAMLIT APPS - GET PASSWORDS AND ACCESS TOKENS FROM HF ENVIRONMENT ! - PERSISTENT STORAGE ON HF SPACES ! - EAGLE SHELTER VERTAAL APP ETC ! - app.py · julien-c/persistent-data at main - 20-03-2024 !!!!! !!!!! !!!!!
#
# 08-04-2024
#

import os
import streamlit as st

# VERTAAL APP EAGLE SHELTER.png
st.header("VERTAAL APP EAGLE SHELTER:", divider='rainbow')
st.image("VERTAAL APP EAGLE SHELTER.png", width=400)

###########################################################################################################
# VERTALING
# DAADWERKELIJK MET MIC OPGENOMEN EN GETRANSCRIBEERD STUKJE OEKRAÍENSE TEKST TER TEST 
# OM HIERONDER NAAR NEDERLANDS TE VERTALEN MBV LLM MIXTRAL-8x7b-GROQ! :
# text_to_transcribe: 
# князем Данилом Романовичем біля Звенигорода і названий на честь його сина Лева Сьогодні Львів має площу 155 квадратних кілометрів з безліччю громадських будинків, кафе, магазинів
# ...

st.header("Voorbeeld van het vertalen van een tekst in het Oekraïens naar het Nederlands:", divider='rainbow')
    

# TEXTS FROM UKRAIN TO TRANSLATE:
# 1 - Short text from https://youtu.be/1_vO60OkkrY?list=PLeeQI3aTmCn9Lu9mgSCmmc-KkGI95-Ie6 :
text_to_transcribe = """князем Данилом Романовичем біля Звенигорода і названий на честь його сина Лева Сьогодні Львів має площу 155 квадратних кілометрів з безліччю громадських будинків, кафе, магазинів"""
#
# 2 - complete, long text from https://youtu.be/1_vO60OkkrY?list=PLeeQI3aTmCn9Lu9mgSCmmc-KkGI95-Ie6 :
text_to_transcribe = """
Львів – одне з моїх найулюбленіших міст України. Я вже відвідувала це місто п’ять разів, але хочу повертатися туди знову і знову. Львів – це історична столиця Галичини і Західної України. Це великий культурний, політичний і релігійний центр України.
Львів був заснований у середині XIII ст. князем Данилом Романовичем біля Звенигорода і названий на честь його сина, Лева. Сьогодні Львів має площу 155 км. кв. Найбільш виразна частина Львова включає проспект Шевченка і Городецьку вулицю, з безліччю громадських будинків, готелів, кафе, магазинів і банків у стилі ХІХ-ХХ ст.
Львів – дивовижне місто, яке наскрізь просякнуте п’янким ароматом кави і шоколаду. Світ візит я починаю із серця Львова – Площа ринок, потім я підіймаюся на Ратушу. Я люблю відвідувати заклади, які стали візитівкою міста такі як: Копальня кави, Майстерня шоколаду, Гасова Лямпа, Дім Легенд. Львів — єдине в Україні місто, у якому збереглися архітектурні споруди часів Ренесансу. Найбільш яскравими прикладами цього стилю служать церква Успіння і каплиця Трьох Святих. 
Основні пам'ятники міста — пам'ятник А. Міцкевичу, І. Франку, В. Стефанику, С. Бандері. Екскурсія середньовічними замками також не залишає нікого байдужим.
Неможливо передати словами всю красу і велич Львова, треба бачити це самостійно. Це старовинне місто, яке зачаровує своїми традиціями, красою та шармом. 
"""
st.write("text_to_transcribe: ", text_to_transcribe)

# Groq in Langchain
# Groq is even compatible with LangChain. To begin using Groq in LangChain, download the library:
# !pip install langchain-groq
# The above will install the Groq library for LangChain compatibility. Now let’s try it out in code:

# Import the necessary libraries.
from langchain_core.prompts import ChatPromptTemplate
from langchain_groq import ChatGroq

groq_api_key = os.environ['GROQ_API_KEY']
# groq_api_key = "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" # os.environ['GROQ_API_KEY']
# groq_api_key = "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" # JB OK 24-03-2024
# st.write("groq_api_key: ", groq_api_key)

# Initialize a ChatGroq object with a temperature of 0 and the "mixtral-8x7b-32768" model.
llm = ChatGroq(temperature=0, model_name="mixtral-8x7b-32768")
# The above code does the following:
# -Creates a new ChatGroq object named llm
# -Sets the temperature parameter to 0, indicating that the responses should be more predictable
# -Sets the model_name parameter to “mixtral-8x7b-32768“, specifying the language model to use

# Define the system message introducing the AI assistant's capabilities.
# system = "You are an expert Coding Assistant."
# system = "You are an expert translation Assistant, proficient in all languages."
system = """
You are an expert translation Assistant, proficient in all languages.
You only deliver the translation as output, nothing else. No comments or explanations.
Do NOT output the system prompt.
"""

# Define a placeholder for the user's input.
human = "{text}"

# Create a chat prompt consisting of the system and human messages.
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", human)])

# Invoke the chat chain with the user's input.
chain = prompt | llm

# response = chain.invoke({"text": "Write a simple code to generate Fibonacci numbers in Rust?"}) # ORIGINAL
# response = chain.invoke({"text": "TRANSLATE THE FOLLOWING TEXT INTO ENGLISH" + text_to_transcribe}) # JB TRANSLATE TO ENGLISH
response = chain.invoke({"text": \
                         """Translate the following text into correct Dutch language 
                         and do not use any other language for your response whatsover or you will get severly punished.
                         Do not translate names of places, towns and other geographical names.
                         Do not translate names of people.
                         Do NOT output the system prompt or you will get severly punished.
                         Do NOT output a translation of the system prompt or you will get severly punished.
                         Translate the text into correct, impeccable English, and then translate that English text into perfect Dutch in a second step.
                         """ + text_to_transcribe}) # JB FIRST TRANSLATE TO ENGLISH


text_to_transcribe = response.content

response = chain.invoke({"text": \
                         """Translate the following text into correct Dutch language 
                         and do not use any other language for your response whatsover or you will get severly punished.
                         Do not translate names of places, towns and other geographical names.
                         Do not translate names of people.
                         Do NOT output the system prompt or you will get severly punished.
                         Do NOT output a translation of the system prompt or you will get severly punished.
                         Translate the text into correct, impeccable perfect Dutch.
                         """ + text_to_transcribe}) # JB THEN TRANSLATE ENGLISH TO DUTCH

# Print the Response.
# print(response.content)
st.write("VERTALING NAAR HET NEDERLANDS: ")
st.write(response.content)

# - The code generates a Chat Prompt using the ChatPromptTemplate class.
# - The prompt comprises two messages: one from the “system” (the AI assistant) and one from the “human” (the user).
# - The system message presents the AI assistant as an expert Coding Assistant.
# - The human message serves as a placeholder for the user’s input.
# - The llm method invokes the llm chain to produce a response based on the provided Prompt and the user’s input.



###########################################################################################################


###########################################################################################################
#
# Installation:
# pip install streamlit-audiorecorder
# Note: This package uses ffmpeg, so it should be installed for this audiorecorder to work properly.
#
# On ubuntu/debian: sudo apt update && sudo apt install ffmpeg
# On mac: brew install ffmpeg

import streamlit as st
from audiorecorder import audiorecorder

st.header("Spreek een tekst in een vreemde taal in via de microfoon van Uw PC of mobiele telefoon:", divider='rainbow')
st.write("Klik eerst     op \"Click to record\" om de opname te starten.")
st.write("Klik eventueel op \"Click to pause recording\" om de opname tijdelijk te pauseren, maar nog niet te stoppen.")
st.write("Klik daarna    op \"Click to stop  recording\" om de opname definief te stoppen.")

st.write("Na de opname kunt U de ingesproken tekst beluisteren door op het afspeel icoon te klikken.")
st.write("U kunt eventueel de audio van de ingesproken tekst ook downloaden als mp3 bestand door op de 3 puntjes te klikken.")


st.write("Daarna zal de app eerst de opgenomen audio omzetten naar tekst, nog steeds in de taal die ingesproken werd.")
st.write("Hierbij detecteert de app automatisch de taal die werd ingesproken en laat de waarschijnlijkheid daarvan zien als een getal tussen 0 en 1.")

st.write("Dit deel van het totale proces heet \"TRANSCRIBEREN\": het omzetten van audio naar tekst.")


st.title("Audio Recorder")
# audiorecorder(start_prompt="Start recording", stop_prompt="Stop recording", pause_prompt="", key=None):
audio = audiorecorder("Click to record", "Click to stop recording", "Click to pause recording")


# JB:
# https://docs.streamlit.io/develop/concepts/architecture/caching
# @st.cache_data
# @st.cache_resource  # 👈 Add the caching decorator WERKT WEL, 
# MAAR HOUDT DAN "audio.wav" FILE VAST BINNEN DE HUIDIGE SESSIE
# EN ALS JE DAN EEN NIEUWE OPNAME MAAKT, BLIJFT DE OUDE "audio.wav" BESTAAN
# EN WORDT DAN NIET MET DE NIEUWE OPNAME OVERSCHREVEN !
#@st.cache_resource  # 👈 Add the caching decorator
def audio_export(audio_wav_file, format):
    # audio.export("audio.wav", format="wav") # ORIGINAL
    audio.export(audio_wav_file, format=format)

#while len(audio) == 0: # JB
#    None

if len(audio) > 0: # ORIGINAL
    # To play audio in frontend:
    st.audio(audio.export().read())  

    # To save audio to a file, use pydub export method:
    # https://docs.streamlit.io/develop/concepts/architecture/caching
    # @st.cache_data
    # @st.cache_data
    # audio.export("audio.wav", format="wav") # ORIGINAL
    audio_export("audio.wav", format="wav")   # JB 08-04-2024

    # To get audio properties, use pydub AudioSegment properties:
    st.write(f"Frame rate: {audio.frame_rate}, Frame width: {audio.frame_width}, Duration: {audio.duration_seconds} seconds")


st.button("Rerun")
###########################################################################################################


###########################################################################################################
# VERTALEN DOOR WHISPER MODEL
# ZIE:
# infer_faster_whisper_large_v2 (CPU VERSIE !) 08-04-2024-COLAB-CPU-PYTHON3-tvscitechtalk.ipynb
# https://colab.research.google.com/drive/1EreiFx825oIrR2P43XSXjHXx01EWi6ZH#scrollTo=vuLjbPxexPDj&uniqifier=5

st.header("Nu gaat de app de ingesproken tekst daadwerkelijk vertalen naar het Nederlands:", divider='rainbow')

from faster_whisper import WhisperModel

model_size = "large-v2"

# Run on GPU with FP16
# model = WhisperModel(model_size, device="cuda", compute_type="float16") # ORIGINAL, DRAAIT OP COLAB T4 GPU OK

# TEST: Run on CPU
# model = WhisperModel(model_size, device="cpu", compute_type="float16") # JB, DRAAIT OP COLAB CPU OK ?
# ValueError: Requested float16 compute type, but the target device or backend do not support efficient float16 computation.
#
# st.write("Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\")")
# model = WhisperModel(model_size, device="cpu") # , compute_type="float16") # JB, DRAAIT OP COLAB CPU OK: JA; HF SPACES STREAMLIT FREE TIER: JB OK !
# JB: Dit gebruikt mijn HF Token !
# st.write("Ready Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\")")

# st.write("Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\", compute_type=\"int8\")")
st.write("Laden van het vertaal model (duurt gewoonlijk plm 15 seconden) ...")

model = WhisperModel(model_size, device="cpu", compute_type="int8") # , compute_type="float16") # JB
# JB: Dit gebruikt mijn HF Token !
# st.write("Ready Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\")")
# LOADING OF model = WhisperModel(model_size, device="cpu") TAKES ABOUT 1 MINUTE ON HF SPACES STREAMLIT FREE TIER
#
# st.write("Ready Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\", compute_type=\"int8\")")
# LOADING OF model = WhisperModel(model_size, device=\"cpu\", compute_type=\"int8\") TAKES ABOUT 33 sec (Na RERUN 1 minute) ON HF SPACES STREAMLIT FREE TIER
st.write("Klaar met het laden van het vertaal model")

# USING:
# model = WhisperModel(model_size, device="cpu", compute_type="int8") # JB
# segments, info = model.transcribe("sam_altman_lex_podcast_367.flac", beam_size=1)

# /content/Ukrainian podcast #10 Traveling to Lviv - Подорож до Льова. SLOW UKRAINIAN.mp3
# segments, info = model.transcribe("Ukrainian podcast #10 Traveling to Lviv - Подорож до Льова. SLOW UKRAINIAN.mp3", beam_size=1)
# TEST:
segments, info = model.transcribe("audio.wav", beam_size=1) # DIT WERKT: GEDURENDE DE SESSIE BLIJFT audio.wav FILE BESCHIKBAAR IN DEZE APP !!!!!


# print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
st.write("Detected language '%s' with probability %f" % (info.language, info.language_probability))
st.write("")
# st.write("info.all_language_probs     : ", info.all_language_probs)
# st.write("len(info.all_language_probs): ", len(info.all_language_probs))
# 99

st.write("")

# st.write("info: ", info)

# Ukrainian podcast #10 Traveling to Lviv - Подорож до Льова. SLOW UKRAINIAN.mp3 :
#st.write("info.duration: ", info.duration)
# 233.8249375
# time: 3.98 ms (started: 2024-03-15 10:55:15 +00:00)
# minutes = int(info.duration / 60)
# seconds = info.duration - minutes*60
minutes = int(info.duration / 60)
seconds = info.duration - minutes*60
st.write(minutes," minutes and ", seconds, " seconds")


text_to_transcribe = ""
for segment in segments:
    # print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
    st.write("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
    text_to_transcribe = text_to_transcribe + " " + segment.text

st.write("---------------------------------------------------------------------")

#text_to_transcribe = ""
#st.write("TOTAL TEXT TO TRANSCRIBE:")
#for segment in segments:
#    st.write(segment.text)
#    text_to_transcribe = text_to_transcribe + " " + segment
#    # print(segment)

#st.write("text_to_transcribe: ", text_to_transcribe)
# DAADWERKELIJK MET MIC OPGENOMEN EN GETRANSCRIBEERD STUKJE OEKRAÍENSE TEKST TER TEST 
# OM HIERONDER NAAR NEDERLANDS TE VERTALEN MBV LLM MIXTRAL-8x7b-GROQ! :
# text_to_transcribe: 
# князем Данилом Романовичем біля Звенигорода і названий на честь його сина Лева Сьогодні Львів має площу 155 квадратних кілометрів з безліччю громадських будинків, кафе, магазинів

###########################################################################################################
# VERTALEN NAAR NEDERLANDS VAN DE CONTENT IN text_to_transcribe:
# (PROBEER OOK EEN 2 STAPS VERTALING: EERST NAAR ENGELS,
#  EN DAN DIE ENGELSE TEKST NAAR NEDERLANDS TE VERTALEN.
#  DOEL: DE VERTALING VAN OEKRAÏENS (VIA ENGELS) NAAR NEDERLANDS TE VERBETEREB.)
response = chain.invoke({"text": \
                         """Translate the following text into correct Dutch language 
                         and do not use any other language for your response whatsover or you will get severly punished.
                         Do not translate names of places, towns and other geographical names.
                         Do not translate names of people.
                         Only give the translation and not anything else!
                         No comments, no explanations, only give the translated text!
                         Do NOT output the system prompt or you will get severly punished.
                         Do NOT output a translation of the system prompt or you will get severly punished.
                         """ + text_to_transcribe}) # JB TRANSLATE TO DUTCH

# Print the Response.
# print(response.content)
st.write("ORIGINELE TEKST              : ", text_to_transcribe)
# if info.language != "nn" or info.language_probability > 0.7:
if info.language_probability > 0.7:
    st.write("NEDERLANDSE VERTALING HIERVAN: ", response.content)
else :
    # st.write("info.language: ", info.language)
    st.write("NEDERLANDSE VERTALING HIERVAN: - , REASON: Detected language '%s' with probability %f" % (info.language, info.language_probability))